

# Functional Analysis through Applications: Kernel Methods in Data Mining

Hagen Knaf, Hochschule RheinMain

### Outline

- 5. What is Data Mining?
- 6. Discriminant Analysis an Overview
- 7. Kernel Fisher Discriminant Analysis
- 8. The Kernel Method in general



### »Definitions«

- Data Mining: any activity aiming at the extraction of potentially useful information from given data.
- *Data*: a finite set of objects (*samples*) of the same type/structure. Typically an object consists of an ordered collection (*tupel*) of numbers, texts, images etc. The components of such a tupel are called *attributes*.

- Example: (First name, Surname, Sex, Age, Weight)

• *Information*: description of the data in terms of relations between the attribute values.



### Data acquisition

- Data can be collected via specifically prepared measurements, data base searches, polls etc.
- Data from different sources are often mixed together.
- The process of data acquisition is frequently considered/modelled as a stochastic process (measurement errors, inherent random-ness).



### Principal goals of data mining

- Find new previously unknown information (unsupervised learning).
- Confirm hypotheses and specify them precisely (*supervised learning*).

### Mathematical methods in data mining

- Multivariate Statistics
- Geometry (e.g. metric spaces)
- Analysis



#### Data mining as a standardised process



Process model of U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, 1995

#### The problem addressed by discriminant analysis

• Given: a finite set  $X \subset \mathbb{R}^m$  subdivided into  $r \geq 2$  pairwise disjoint subsets  $X = X_1 \cup X_2 \cup \ldots \cup X_r$ .

It is assumed that X is randomly drawn from a population  $\Omega \subseteq \mathbb{R}^m$  subdivided into r pairwise disjoint subsets  $\Omega_i \supseteq X_i$  called *classes*.

- Given: a class  $\mathcal{F}$  of functions  $f : \mathbb{R}^m \to \mathbb{R}$ .
- Find functions  $d_1, \ldots, d_r \in \mathcal{F}$  (so-called *discriminant functions*) such that the *classification rule*

 $C: x \in \mathbb{R}^m$  is assigned to the class  $\Omega_k$  if and only if

$$d_k(x) = \max(d_i(x) : i = 1, \dots, r).$$

### The quality of a classification rule

The quality of the classification rule  ${\bf C}$  is estimated based on the following requirements:

- Its hitrate (either total or a weighted mean of the class-wise hitrates) on the partition  $X = X_1 \cup X_2 \cup \ldots \cup X_r$  is high.
- The likelihood for correct assignment of new samples  $x \in \Omega$  is high.



Two classification rules In the case m=2, r=2





#### Special cases of discriminant analysis

• In the case of r = 2 classes  $\Omega = \Omega_1 \cup \Omega_2$  in the population it suffices to determine *one* discriminant function instead of two: using the function  $d(x) := d_2(x) - d_1(x)$  the original classification rule becomes

 $C: x \in \mathbb{R}^m$  is assigned to the class  $\Omega_2$  if and only if d(x) > 0.

 $x \in \mathbb{R}^m$  is assigned to the class  $\Omega_1$  if and only if d(x) < 0.

- The set  $S := \{x \in \mathbb{R}^m : d(x) = 0\}$  is a hypersurface separating the two classes.
- If F consists of all affine functions f : ℝ<sup>m</sup> → ℝ, that is f(x) = ⟨a, x⟩<sub>2</sub> + b, a ∈ ℝ<sup>m</sup>, b ∈ ℝ one speaks of *linear discriminant analysis*.
  If in addition r = 2 the separating hypersurface is a hyperplane, and the

If in addition r = 2 the separating hypersurface is a hyperplane, and the vector a is orthogonal to the vectors in that hyperplane.

Linear discriminant analysis: Fisher's approach for r = 2

- Situation:  $\mathbb{R}^m \supset X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset, \sum_{x \in X} \mathbb{R}x = \mathbb{R}^m,$  $\mathcal{F} = \{ f(x) = \langle a, x \rangle_2 + b : a \in \mathbb{R}, \|a\|_2 = 1, b \in \mathbb{R} \}.$
- Approach: determine  $d(x) = \langle a^*, x \rangle_2 + b^* \in \mathcal{F}$  such that the separating hyperplane  $S := \{x \in \mathbb{R}^m : d(x) = 0\}$  has the properties:
  - 1. the orthogonal projections of the sets  $X_1$ ,  $X_2$  to the line  $g = \mathbb{R}a^*$ , possess small spread.
  - 2. the centers of these orthogonal projections lie far apart.
- Note that the orthogonal projection  $p : \mathbb{R}^m \to \mathbb{R}a$  for  $||a||_2 = 1$  is given by  $p(x) = \langle a, x \rangle_2 a$ .
- The position of the hyperplane S is determined only up to translations.

#### Linear discriminant analysis: Fisher's approach for r = 2



An analytic solution to Fisher's approach for r = 2

- For  $\overline{x}_i := \frac{1}{|X_i|} \sum_{x \in X_i} x$  the element  $\langle a, \overline{x}_i \rangle_2 a$  is the center of  $p(X_i)$ .
- The spread of  $p(X_i)$  is quantified through  $s_i^2 := \sum_{x \in X_i} (\langle a, x \rangle_2 \langle a, \overline{x}_i \rangle_2)^2$ .
- In  $d(x) = \langle a^*, x \rangle_2 + b^*$  let  $a^* \in \mathbb{R}^m$  be a solution of the optimisation problem

$$\max(\frac{(\langle a, \overline{x}_1 \rangle_2 - \langle a, \overline{x}_2 \rangle_2)^2}{s_1^2 + s_2^2} : a \in \mathbb{R}^m, \, \|a\|_2 = 1)$$

- To solve this problem one brings it into matrix form by expressing a as a linear combination of a system of generators of  $\mathbb{R}^m$ .
- Normally one would use a basis of  $\mathbb{R}^m$ , but in the present context it is essential to use  $X = \{x_1, \ldots, x_n\}$  itself as generators.

#### An analytic solution to Fisher's approach for r = 2This leads to the following matrix form of the optimisation problem

$$\max(\frac{\alpha^t B\alpha}{\alpha^t W\alpha} : \alpha \in \mathbb{R}^n \setminus 0),$$

where:

• 
$$\alpha := (\alpha_1, \dots, \alpha_n)^t \text{ mit } \sum_{i=1}^n \alpha_i x_i = a,$$
  
•  $B := (m_1 - m_2)(m_1 - m_2)^t \in \mathbb{R}^{n \times n}, m_k := (\langle x_1, \overline{x}_k \rangle, \dots, := (\langle x_n, \overline{x}_k \rangle)^t,$   
•  $W := (\langle x_i, x_j \rangle)_{i,j} (\langle x_i, x_j \rangle)_{i,j}^t - |X_1| m_1 m_1^t - |X_2| m_2 m_2^t \in \mathbb{R}^{n \times n}.$ 



### An analytic solution to Fisher's approach for r = 2

• The solution of the optimisation problem  $\max(\frac{\alpha^t B \alpha}{\alpha^t W \alpha} : \alpha \in \mathbb{R}^n \setminus 0)$  is

$$\alpha^* = W^{-1}(m_1 - m_2)$$

provided that W is invertible and  $m_1 \neq m_2$ .

- For the general case Sebastian Mika has provided an algorithm to find sparse solutions of the optimisation problem, that is solutions  $\alpha = (\alpha_1, \ldots, \alpha_n)$  possessing many components having small absolute value.
- Note that the optimisation problem is formulated entirely in terms of scalar products  $\langle x_i, x_j \rangle$  between data points.
- $b^* := -\frac{1}{2}(\alpha^*)^t(m_1 + m_2)$  provided that the separating hyperplane S lies in the middle between the centers  $\overline{x}_1$  and  $\overline{x}_2$ .

### An unsatisfying case of Fisher's discriminant analysis (Example 1)

- Hitrates are sufficient ... at least for the »blue class«.
- The separating straight line however doesn't look convincing a curved line seems to be more appropriate.



#### The approach

• Situation:  $\mathbb{R}^m \supset \{x_1, x_2, \dots, x_n\} = X = X_1 \cup X_2, \sum_{i=1}^n \mathbb{R}x = \mathbb{R}^m,$  $K_{\theta}, \theta \in \Theta$ , a family of kernel functions on  $\mathbb{R}^m$ ,

such that the maps  $\phi_{\theta} : \mathbb{R}^m \to H(K_{\theta})$  are injective.

Approach: Choose parameters θ<sub>1</sub>,..., θ<sub>r</sub> ∈ Θ.
Perform Fisher's discriminant analysis of φ<sub>θ<sub>i</sub></sub>(X) = φ<sub>θ<sub>i</sub></sub>(X<sub>1</sub>) ∪ φ<sub>θ<sub>i</sub></sub>(X<sub>2</sub>) in U<sub>i</sub> := ∑<sub>y∈X</sub> ℝφ<sub>θ<sub>i</sub></sub>(y) to obtain discriminant functions d<sub>i</sub> : U<sub>i</sub> → ℝ.
Select a discriminant function d<sub>ℓ</sub> of highest quality and take the pullback d : ℝ<sup>m</sup> → ℝ, x ↦ d<sub>ℓ</sub>(φ<sub>θ<sub>ℓ</sub></sub>(x)) as a discriminant function for X = X<sub>1</sub> ∪ X<sub>2</sub>.





#### Finding solutions

• Situation:  $\mathbb{R}^m \supset \{x_1, x_2, \dots, x_n\} = X = X_1 \cup X_2, \sum_{i=1}^n \mathbb{R} x_i = \mathbb{R}^m,$ 

K a kernel function on  $\mathbb{R}^m,\,\phi:\mathbb{R}^m\to H(K)$  is injective.

• Performing Fisher's discriminant analysis of  $\phi(X) = \phi(X_1) \cup \phi(X_2)$  in

$$U := \sum_{j=1}^{n} \mathbb{R}\phi(x_j) = \sum_{j=1}^{n} \mathbb{R}K(\cdot, x_j) \text{ yields a discriminant function}$$
$$d : U \to \mathbb{R}, \ u \mapsto \langle a^*, u \rangle + b^*, \text{ where } a^* = \sum_{i=1}^{n} \alpha_i^* K(\cdot, x_i).$$

• For the pullback  $d \circ \phi$  die identity  $\langle \phi(x_i), \phi(x) \rangle = K(x, x_i)$  hence gives

$$(d \circ \phi)(x) = \langle \sum_{i=1}^{n} \alpha_i^* K(\cdot, x_i), K(\cdot, x) \rangle + b^* = \sum_{i=1}^{n} \alpha_i^* K(x, x_i) + b^*.$$

### Finding solutions

• Note that the coefficients  $\alpha^* = (\alpha_1^*, \ldots, \alpha_n^*)$  of the pullback

$$a^* = \sum_{i=1}^n \alpha_i^* K(\cdot, x_i)$$

can be computed using scalar products  $\langle \phi(x_i), \phi(x_j) \rangle$  thus the values  $K(x_i, x_j)$  of the kernel function K only.

#### **Example 1 using the Gauß kernel**



#### Example 1 using the polynomial kernel of degree 2





#### Example 2: Gauß kernel versus polynomial kernel of degree 3

• 5 summands, bandwidth h=0.858, c=0.75



#### Example 2: Gauß kernel versus polynomial kernel of degree 3

• Distribution of the discriminant function values d(x)



#### Example 2: Gauß kernel versus polynomial kernel of degree 3



### What can we learn from Kernel Fisher discriminant analysis concerning general applications of reproducing kernel Hilbert spaces?

We have performed the following steps:

- Embed a nonlinear problem / task into a RKHS H(K).
- Solve the linear version of the problem / task in H(K).
- Pull the solution back to the original space.

To solve the linear version in H(K) it was actually not necessary to work in H(K) due to the identity

$$K(x,y) = \langle \phi(x), \phi(y) \rangle$$

that allowed to work in the original space using the kernel function K.

### What can we learn from Kernel Fisher discriminant analysis concerning general applications of reproducing kernel Hilbert spaces?

The method used to develop Kernel Fisher discriminant analysis works for problems / tasks possessing the following features:

- There exists a linear version of the problem / task.
- There exists a solution / an algorithm for finding the solution that works with scalar products of the input data only.

# The Kernel Method in general

# Further Examples of problems / tasks to which the kernel method can be applied:

- Interpolation using functions, that are linear combinations of kernel functions,
- Regression using functions, that are linear combinations of kernel functions,
- Cluster analysis based on Euclidean distances.



# Thank you for your attention.



### Further Reading – scientific articles

- R. A. Fisher, *The Use of Multiple Measurements in Taxonomic Problems*, Annals of Eugenics **7** (1936), 179-188.
- S. Mika et. al., A Mathematical Programming Approach to the Kernel Fisher Algorithm, Advances in Neural Information Processing Systems 13 (2001).

