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What is Data Mining?

»Definitions«

Data Mining: any activity aiming at the extraction of potentially useful
Information from given data.

Data: a finite set of objects (samples) of the same type/structure.
Typically an object consists of an ordered collection (tupel) of
numbers, texts, images etc. The components of such a tupel are
called attributes.

— Example: (First name, Surname, Sex, Age, Weight)

Information: description of the data in terms of relations between the
attribute values.




What is Data Mining?

Data: sizes of crap carpaces  Information: subdivision of the data into two groups
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What is Data Mining?

Data acquisition

Data can be collected via specifically prepared measurements, data
base searches, polls etc.

Data from different sources are often mixed together.

The process of data acquisition is frequently considered/modelled
as a stochastic process (measurement errors, inherent random-
ness).




What is Data Mining?

Principal goals of data mining

« Find new previously unknown information (unsupervised learning).
« Confirm hypotheses and specify them precisely (supervised

learning).

Mathematical methods in data mining

« Multivariate Statistics
 Geometry (e.g. metric spaces)
« Analysis

Feranill ppendzralits [FL 7 mem])




What is Data Mining?

Data mining as a standardised process

B Knowledge
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Process model of U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, 1995




Discriminant Analysis — an Overview

The problem addressed by discriminant analysis

e Given: a finite set X C R™ subdivided into r > 2 pairwise disjoint subsets
X=XUXU...UX,.

It is assumed that X is randomly drawn from a population €2 C R™
subdivided into r pairwise disjoint subsets §2; O X, called classes.

e Given: a class F of functions f : R™ — R.

e Find functions dy,...,d, € F (so-called discriminant functions) such that
the classification rule

C: x € R™ is assigned to the class € if and only if
di(x) = max(d;(z) :i=1,...,7).

is »>sufficiently good<.



Discriminant Analysis — an Overview

The quality of a classification rule

The quality of the classification rule C is estimated based on the following
requirements:

e Its hitrate (either total or a weighted mean of the class-wise hitrates)
on the partition X = X7 U X5 U...U X, is high.

e The likelihood for correct assignment of new samples = € (2 is high.
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Discriminant Analysis — an Overview

Special cases of discriminant analysis

e In the case of »r = 2 classes 2 = ()7 U )y in the population it suffices
to determine one discriminant function instead of two: using the function
d(z) := dy(x) — di(zx) the original classification rule becomes

C: x € R™ is assigned to the class Qs if and only if d(x) > 0.
x € R™ is assigned to the class 1 if and only if d(x) < 0.

e The set S :={x € R™ : d(z) = 0} is a hypersurface separating the two
classes.

o If F consists of all affine functions f : R™ — R, that is f(x) = (a,x)2 + b,
a € R™, b € R one speaks of linear discriminant analysis.

If in addition r» = 2 the separating hypersurface is a hyperplane, and the
vector a is orthogonal to the vectors in that hyperplane.
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Discriminant Analysis — an Overview

Linear discriminant analysis: Fisher’s approach for r» = 2

e Situation: R™ D X = X; U Xs, X1 N Xy = @, Z Rx = R™,
zeX

F={f(x)={(a,x)2+b:a R, |allz =1,b € R},

e Approach: determine d(x) = (a*,z)s + b* € F such that the separating
hyperplane S := {x € R™ : d(x) = 0} has the properties:

1. the orthogonal projections of the sets X7, X5 to the line ¢ = Ra™,
possess small spread.
2. the centers of these orthogonal projections lie far apart.
e Note that the orthogonal projection p : R™ — Ra for |jal|s = 1 is given by
p(x) = (a,z)2 a.

e The position of the hyperplane S is determined only up to translations.
11



Discriminant Analysis — an Overview

Linear discriminant analysis: Fisher’s approach for r = 2

[ Optimal hyperplane
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Discriminant Analysis — an Overview

An analytic solution to Fisher’s approach for r = 2

o For T; := > x the element (a,T;)s a is the center of p(X;).

e The spread of p(X;) is quantified through s? := > ({a,x)2 — (a,T;)2)".
rzeX;

e In d(z) = (a*,z)s + b* let a* € R™ be a solution of the optimisation
problem

({a,Z1)2 — {(a,T
s% —+ 3%

2
max ( 2)2) ca € R™, |lal|lz = 1).

e To solve this problem one brings it into matrix form by expressing a as a
linear combination of a system of generators of R™.

e Normally one would use a basis of R™, but in the present context it is
essential to use X = {x1,...,x,} itself as generators.
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Discriminant Analysis — an Overview

An analytic solution to Fisher’s approach for r = 2
This leads to the following matrix form of the optimisation problem

ol Bo

: R™\ 0O
maX(atWoz a € R™\0),
where:
o a:=(ay,...,a,)! mit Y a;z; = a,
=1
o B:=(m1—ma)(my —mo)" € R"*™ my := ({x1,Tk),...,:= ({zn,Tg))",

o W= ({zs,75))i,;({%s, 7)) ; — |Xalmam] — [X2|mam} € R™*™.

<
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Discriminant Analysis — an Overview

An analytic solution to Fisher’s approach for r = 2

The solution of the optimisation problem max((‘;:% ca € R"\ 0) is

*

o =W mp — mo)
provided that W is invertible and mj # ms.

For the general case Sebastian Mika has provided an algorithm to find spar-
se solutions of the optimisation problem, that is solutions oo = (a, ..., ay,)
possessing many components having small absolute value.

Note that the optimisation problem is formulated entirely in terms of
scalar products (z;,x;) between data points.

b* := —3(a*)"(m1 + my) provided that the separating hyperplane S lies
1n the middle between the centers 7 and x».
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Discriminant Analysis — an Overview

An unsatisfying case of Fisher’s discriminant analysis (Example 1)
« Hitrates are sufficient ... at least for the »blue class«.

« The separating straight line however doesn’t look convincing — a
curved line seems to be more appropriate.
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[ Data: 1240 samples .
420 in class 2, 820 in class 1 |
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Kernel Fisher Discriminant Analysis

The approach
e Situation: R™ D {x1,22,...,2,} = X = X3 U Xy, > Rz =R™,
i=1
Ky, 0 € O, a family of kernel functions on R™,
such that the maps ¢y : R™ — H(Ky) are injective.

e Approach: Choose parameters 64,...,0, € ©.
Perform Fisher’s discriminant analysis of ¢y, (X) = ¢y, (X1) U ¢, (X2)

in U; := > Rey,(y) to obtain discriminant functions d; : U; — R.
yeX

Select a discriminant function d, of highest quality and take the pullback
d:R™ — R, z+ d¢(dg,(x)) as a discriminant function for X = X3 U Xo.
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Kernel Fisher Discriminant Analysis

Using the kernel function Ky, (z) = (x,y)?.




Kernel Fisher Discriminant Analysis

Using the kernel function Ky, (z) = (x,y)?.
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Kernel Fisher Discriminant Analysis

Finding solutions

n
e Situation: R™ D {x1,22,...,2,} = X = X7 U Xy, > Rx; =R™,
i=1

K a kernel function on R™, ¢ : R™ — H(K) is injective.
e Performing Fisher’s discriminant analysis of ¢(X) = ¢(X1) U ¢(X2) in

U:= > Re(z;) = > RK(-,z;) yields a discriminant function
j=1 j=1

d:U — R, ur (a*,u) + b*, where a* = ) afK(-,x;).

=1

e For the pullback d o ¢ die identity (¢(x;), ¢(x)) = K (x, ;) hence gives

(do o)z ZQK , L5 ), ))—I—b*:Za;‘K(m,mi)—l—b*.

y=1
20




Kernel Fisher Discriminant Analysis

Finding solutions

e Note that the coefficients a* = (af,...,a}) of the pullback

a*:ia;‘K(-,azi) >
i=1

can be computed using scalar products (¢(x;),d(x;)) thus the values
K (x;,z;) of the kernel function K only.

21




Kernel Fisher Discriminant Analysis

Example 1 using the Gaul’ kernel
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Kernel Fisher Discriminant Analysis

Example 1 using the polynomial kernel of degree 2
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Kernel Fisher Discriminant Analysis

Example 2: Gaul} kernel versus polynomial kernel of degree 3
* 5 summands, bandwidth h=0.858, ¢c=0.75
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Kernel Fisher Discriminant Analysis

Example 2: Gaul} kernel versus polynomial kernel of degree 3
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Kernel Fisher Discriminant Analysis

Example 2: Gaul} kernel versus polynomial kernel of degree 3
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The Kernel Method in general

What can we learn from Kernel Fisher discriminant analysis
concerning general applications of reproducing kernel Hilbert
spaces?

We have performed the following steps:

 Embed a nonlinear problem / task into a RKHS H(K).
« Solve the linear version of the problem / task in H(K).
« Pull the solution back to the original space.

To solve the linear version in H(K) it was actually not necessary to work
iIn H(K) due to the identity

that allowed to work in the original space using the kernel function K.
27




The Kernel Method in general

What can we learn from Kernel Fisher discriminant analysis
concerning general applications of reproducing kernel Hilbert
spaces?

The method used to develop Kernel Fisher discriminant analysis works
for problems / tasks possessing the following features:

* There exists a linear version of the problem / task.

* There exists a solution / an algorithm for finding the solution that
works with scalar products of the input data only.

28




The Kernel Method in general

Further Examples of problems /tasks to which the kernel method
can be applied:

« Interpolation using functions, that are linear combinations of kernel
functions,

* Regression using functions, that are linear combinations of kernel
functions,

« Cluster analysis based on Euclidean distances.
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Thank you for your attention.
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Further Reading — scientific articles

* R.A. Fisher, The Use of Multiple Measurements in Taxonomic
Problems, Annals of Eugenics 7 (1936), 179-188.

« S. Mika et. al., A Mathematical Programming Approach to the Kernel
Fisher Algorithm, Advances in Neural Information Processing
Systems 13 (2001).

31




