
What is functional analysis?

One possible answer: Functional analysis is the systematic study of
coupled algebraic and topological structures.

The purpose of this talk is to sketch
I what this means,
I how such an approach can grow out of undergraduate mathe-

matics,
I why such an approach is useful to solve problems in analysis.



The structure of the system of real numbers

The real numbers are known to us from the first semester on (or even
from school). Explicitly or implicitly, we make use of three different
structures on R, as follows:

I Algebraic structure: We can add and multiply real numbers
and hence can perform calculations. Equipped with the alge-
braic operations + and ·, the real numbers form a field.

I Order structure: We can compare real numbers in size.
Equipped with the ordering ≤, the real numbers form a totally
ordered set.

I Topological structure: We can compare how close real num-
bers are, which sets form a neighborhood of a given point, and
so on. This topological structure is embodied in the metric
d(x , y) = |x − y |. Using this structure, we can talk about
convergence and continuity.



Compatibility of the different structures
We work with these different structures simultaneously, exploiting
(usually unconsciously) the fact that these structures are compatible
with each other.

I The compatibility of the algebraic structure and the order struc-
ture is embodied in the monotonicity laws: If a < b then
a + c < b + c for all c ∈ R and ac < bc for all c > 0.

I The compatibility of the algebraic structure and the topological
structure is embodied in the continuity of the algebraic oper-
ations: If an → a and bn → b then an + bn → a + b and
anbn → ab.

I The compatibility of the order structure and the topological
structure stems from the fact that the metric d(x , y) = |x − y |
is defined in terms of the absolut value which, in turn, is directly
defined in terms of the order:

|x | :=

{
x , if x ≥ 0;
−x , if x ≤ 0.



Generalization to several variables

The set Rn is the natural habitat for functions in several variables.
This set carries various structures.

I Algebraic structure: We can add elements of Rn and multiply
them by scalars, thereby making Rn into a real vector space.

I Geometric structure: We can introduce an inner product (or
scalar product) 〈·, ·〉 on Rn, which allows us to talk about lengths
of vectors and angles between vectors. This makes Rn into a
Euclidean space.

I Topological structure: Denoting by ‖x‖ :=
√
〈x , x〉 the

length of a vector x ∈ Rn, we can define the distance d(x , y) :=
‖x − y‖ between two vectors. This metric yields a topological
structure on Rn. Using this structure, we can talk about con-
vergence and continuity.



Topological vector spaces
Definition. A topological vector space over K = R or C is a
vector space over K together with a topology such that the addition

V × V → V
(v1, v2) 7→ v1 + v2

and the scalar multiplication

K× V → V
(λ, v) 7→ λv

are continuous. Thus one requires that the vector space structure
and the topological structure be compatible.

To a large extent, functional analysis is the study of topological vector
spaces, but one also studies topological groups, topological rings,
topological algebras, topological lattices and other mixed algebro-
topological structures.



Norms and metrics (1)

Definition. A norm on a (real or complex) vector space V is a
mapping V → R denoted by v 7→ ‖v‖ which has the following
properties:

I ‖v‖ ≥ 0 for all v ∈ V with equality if and only if v = 0;
I ‖λv‖ = |λ| ‖v‖ for all v ∈ V and all λ ∈ R;
I ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v ,w ∈ V .

We interpret ‖v‖ as the “length” or “size” of the vector v ∈ V .

Definition. A metric on a set X is a mapping d : X × X → R
which has the following properties:

I d(x , y) ≥ 0 for all x , y ∈ X with equality if and only if x = y ;
I d(y , x) = d(x , y) for all x , y ∈ X ;
I d(x , y) ≤ d(x , u) + d(u, y) for all x , y , u ∈ X .

We interpret d(x , y) as the “distance” between x , y ∈ X .



Norms and metrics (2)

Suppose we want to equip a (real or complex) vector space V with a
metric d which respects the vector space operations in the following
sense:

I d(x + a, y + a) = d(x , y) for all x , y , a ∈ V
(translation invariance);

I d(λx , λy) = |λ| d(x , y) for all x , y ∈ V and all scalars λ
(homogeneity).

How can we find such a metric?

Theorem. A metric d : V ×V → R has the above properties if and
only if it has the form d(x , y) = ‖x − y‖ where ‖ · ‖ is a norm on
V . (Proof as exercise!)



Normed spaces are topological vector spaces
Theorem. Every normed space is a topological vector space.

Proof. Let V be a normed space. We have to show that the addition
and the scalar multiplication are continuous. For the addition, we
have to show that if vn → v and wn → w in V implies that vn+wn →
v + w . This holds because

‖(vn + wn)− (v + w)‖ = ‖vn − v + wn − w‖
≤ ‖vn − v‖+ ‖wn − w‖.

For the scalar multiplication, we have to show that if λn → λ in K
and vn → v in V then λnvn → λv . This holds because

‖λnvn − λv‖ = ‖λn(vn − v) + (λn − λ)v‖
≤ ‖λn(vn − v)‖+ ‖(λn − λ)v‖
= |λn| · ‖vn − v‖+ |λn − λ| · ‖v‖.



Inner products and norms

Definition. An inner product (or scalar product) on a vector
space V over K = R or C is a mapping V × V → K denoted by
(v ,w) 7→ 〈v ,w〉 which has the following properties:

I 〈v , v〉 ≥ 0 for all v ∈ V with equality if and only if v = 0;
I 〈w , v〉 = 〈v ,w〉 for all v ,w ∈ V ;
I 〈
∑m

i=1 λivi ,
∑n

j=1 µjwj〉 =
∑m

i=1
∑n

j=1 λiµj〈vi ,wj〉 for all vec-
tors vi ,wj ∈ V and all scalars λi , µj ∈ K.

It is easy to check that if 〈·, ·〉 is an inner product then
‖x‖ :=

√
〈x , x〉 is a norm. How can one decide whether or

not a given norm is induced by an inner product?

Theorem. A norm ‖ · ‖ on a vector space V over K is induced by
an inner product if and only if for all v ,w ∈ V the parallelogram
law ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 holds.



Examples for norms (1)
Let K = R or C. There are many different ways to introduce norms
on Kn. The following are the most common ones:

I ‖x‖2 :=
√
|x1|2 + |x2|2 + · · ·+ |xn|2;

I ‖x‖1 := |x1|+ |x2|+ · · ·+ |xn|;
I ‖x‖∞ := max{|x1|, |x2|, . . . , |xn|}.

More generally, we can introduce the norms
‖x‖p := p

√
|x1|p + |x2|p + · · ·+ |xn|p

for all p ≥ 1, for which ‖x‖∞ is obtained as the limit for p → ∞.
(Of these norms, only ‖ · ‖2 is derived from an inner product.) Many
other norms on Kn are possible. For example, if ‖ · ‖ is any norm
on Kn and if A ∈ Kn×n is any invertible matrix then |||x ||| := ‖Ax‖
is again a norm on Kn.

If V is any finite-dimensional vector space over K, we can identify
V with Kn by choosing a basis, thereby identifying norms on V with
norms on Kn. Hence V can be equipped with a variety of different
norms.



Examples for norms (2)

Let K = R or C and let C [a, b] be the space of all continuous
functions x : [a, b]→ K. We can equip C [a, b] with various different
norms, for example the following ones:

I ‖x‖2 :=
√∫ b

a |x(t)|2dt;

I ‖x‖1 :=
∫ b
a |x(t)| dt;

I ‖x‖∞ := max{|x(t)| | a ≤ t ≤ b}.
More generally, we can introduce the norms

‖x‖p := p
√∫ b

a |x(t)|pdt
for all p ≥ 1. Note the analogy with the finite-dimensional case,
which becomes clear if we interpret a function x : [a, b] → K as
a vector

(
x(t)

)
a≤t≤b with an infinite number of components x(t),

interpreting the argument t as an index.



Equivalence of norms

Definition. Two norms ‖ · ‖ and ||| · ||| on a (real or complex) vector
space V are called equivalent if there are constants c > 0 and
C > 0 such that

c‖x‖ ≤ |||x ||| ≤ C‖x‖ for all x ∈ V .

It is easy to see that this is indeed an equivalence relation on the
set of all norms on V . Moreover, the following holds true. (Exercise!)

Theorem. Two norms ‖ · ‖ and ||| · ||| on V are equivalent if and only
if, given a sequence (xn) in V and an element x ∈ V , the condition
‖xn − x‖ → 0 holds if and only if the condition |||xn − x ||| → 0 holds.

Thus as far as topological properties (convergence, continuity, . . .)
are concerned, we do not have to distinguish between equivalent
norms.



Examples for equivalent norms
The norms ‖ · ‖p on Kn (where 1 ≤ p ≤ ∞) are all equivalent.
Assume 1 ≤ p <∞. Given x ∈ Kn, we have

‖x‖∞ = max
1≤i≤n

|xi | = |xi0 |

= p
√

0p + · · ·+ |xi0 |p + · · ·+ 0p

≤ p
√
|x1|p + · · ·+ |xi0 |p + · · ·+ |xn|p = ‖x‖p.

On the other hand,

‖x‖p = p
√
|x1|p + |x2|p + · · ·+ |xn|p

≤ p
√
‖x‖p∞ + ‖x‖p∞ + · · ·+ ‖x‖p∞

= p
√

n · ‖x‖p∞ = p
√

n · ‖x‖∞.

Hence ‖x‖∞ ≤ ‖x‖p ≤ p
√

n · ‖x‖∞ for all x ∈ Kn, so that ‖ · ‖∞
and ‖ · ‖p are equivalent. Two norms ‖ · ‖p1 and ‖ · ‖p2 are thus both
equivalent to ‖ · ‖∞ and consequently also equivalent to each other.



Norms on finite-dimensional vector spaces (1)
Theorem. Any two norms on a finite-dimensional K-vector space V
are equivalent.
Proof. Let ‖·‖ be any norm on V . Choose a basis (b1, . . . , bn) of V
and consider the reference norm |||x1b1+· · ·+xnbn||| := |x1|+· · ·+|xn|.
Letting C := max(‖b1‖, . . . , ‖bn‖), we have ‖x‖ ≤ |x1| ‖b1‖+ · · ·+
|xn| ‖bn‖ ≤ C |||x ||| for all x ∈ V . Consequently, ‖ · ‖ : V → R is
continuous with respect to ||| · ||| because | ‖x‖ − ‖y‖ | ≤ ‖x − y‖ ≤
C · |||x − y ||| for all x , y ∈ V . Hence ‖ · ‖ takes its minimum on the
compact set S := {x ∈ V | |||x ||| = 1}, which shows that there is a
number c > 0 such that ‖x‖ ≥ c whenever |||x ||| = 1. Thus if x 6= 0
then ∥∥∥∥ x

|||x |||

∥∥∥∥ ≥ c

for all x 6= 0 and hence ‖x‖ ≥ c |||x ||| for all x ∈ V . The inequality
c |||x ||| ≤ ‖x‖ ≤ C |||x ||| shows that the arbitrary norm ‖·‖ is equivalent
to the reference norm ||| · |||.



Norms on finite-dimensional vector spaces (2)

If we choose a basis (b1, . . . , bn) of V and write each vector x ∈ V
as x = x1b1+ · · ·+xnbn, then x (k) → x in V if and only if x (k)

i → xi
in K for all indices 1 ≤ i ≤ n. This can be expressed by saying that
the following two conditions are equivalent:

I x (k) → x (strong convergence);
I 〈x (k), a〉 → 〈x , a〉 for all a ∈ V (weak convergence).

A finite-dimensional vector space V over K carries a unique topology
which makes it into a topological vector space. This topology is in-
duced by any norm on V . Convergence with respect to this topology
is coordinatewise convergence with respect to any chosen basis of V .



Examples of inequivalent norms

Are the following norms on
C [−1, 1] equivalent?

I ‖f ‖∞ := max
−1≤x≤1

|f (x)|

I ‖f ‖1 :=

∫ 1

−1
|f (x)| dx

Clearly, ‖f ‖1 ≤ 2‖f ‖∞ for all f .
On the other hand, there can be
no constant C such that ‖f ‖∞ ≤
C‖f ‖1. For example, we can find
a sequence (fk) of functions with
‖fk‖1 → 0 and ‖fk‖∞ → ∞ for
k →∞.



Exercise

Given an interval I = [a, b], we denote by C 1(I ) the space of all con-
tinuously differentiable functions f : I → R. Which of the following
norms on C 1(I ) are equivalent?

I ‖f ‖ := max
a≤x≤b

|f (x)|

I ‖f ‖ := |f (a)|+ max
a≤x≤b

|f ′(x)|

I ‖f ‖ := max
a≤x≤b

|f (x)|+ max
a≤x≤b

|f ′(x)|

I ‖f ‖ :=
∫ b
a |f (x)| dx + max

a≤x≤b
|f ′(x)|

I ‖f ‖ := |f (a)|+
∫ b
a |f
′(x)| dx



Examples of infinite-dimensional normed spaces

I `p := {(a1, a2, a3, . . .) | ‖a‖p := p
√∑∞

k=1 |ak |p <∞}
I `∞ := {(a1, a2, a3, . . . ) | ‖a‖∞ := supk≥1 |ak | <∞}

I Lp(I ) := {f : I → K | ‖f ‖p := p
√∫

I |f (x)|pdx <∞}
I L∞(I ) := {f : I → K | ‖f ‖∞ := ess supx∈I |f (x)| <∞}
I Cb(I ) := {f : I → K | f continuous, ‖f ‖∞ := sup

x∈I
|f (x)| <∞}

Exercise. Let a = (a1, a2, a3, . . .) ∈ `p where 1 ≤ p ≤ ∞ and let

a(n) := (a1, a2, a3, . . . , an, 0, 0, 0, . . .).

When does a(n) → a hold in `p?



Geometry of inner product spaces

Both from a theoretical viewpoint and from the viewpoint of applica-
tions, inner product spaces are “better” than general normed spaces.
This is because an inner product, as compared to an arbitrary norm,
provides us with an additional geometric structure. In particular, we
call two elements v1, v2 ∈ V of an inner product space V orthog-
onal and write v1 ⊥ v2, if 〈v1, v2〉 = 0. This gives rise to concepts
like

I orthonormal system,
I orthonormal basis,
I orthogonal projection,
I orthogonal complement.

To a large extent, geometric intuition from the two- and three-
dimensional situation can be transferred to infinite-dimensional
spaces.



Best approximation and orthogonality (1)
Theorem. Let V be an inner product space, U a subspace of V
and x ∈ V an arbitrary element of V . Given a vector u0 ∈ U, the
following two conditions are equivalent:

I ‖x − u0‖ ≤ ‖x − u‖ for all u ∈ U;
I x − u0 ∈ U⊥ (i.e., x − u0 ⊥ u for all u ∈ U).

Proof. Assume that ‖x − u0‖ ≤ ‖x − u‖ for all u ∈ U. Then for all
u ∈ U and all λ > 0 we have

‖x − u0‖2 ≤ ‖x − u0 ± λu‖2

= ‖x − u0‖2 + 2Re〈x − u0,±λu〉+ ‖ ± λu‖2

= ‖x − u0‖2 ± 2λRe〈x − u0, u〉+ λ2‖u‖2,

hence ∓2λRe〈x − u0, u〉 ≤ λ2‖u‖2, i.e., 2|Re〈x − u0, u〉| ≤ λ‖u‖2.
Since λ > 0 may be arbitrarily small, this implies that Re〈x−u0, u〉 =
0. Since u ∈ U was arbitrary, we have Re〈x−u0, u〉 = 0 for all u ∈ U.
For K = R this is the claim x − u0 ⊥ u already.



Best approximation and orthogonality (2)

(Continuation of Proof.) For K = C we can replace u by iu; hence
for all u ∈ U we also have 0 = Re〈x−u0, iu〉 = Re

(
−i〈x−u0, u〉

)
=

Im〈x − u0, u〉 and therefore 〈x − u0, u〉 = 0.

Suppose conversely that x − u0 ⊥ U. Given u ∈ U, we then have
〈x − u0, u0 − u〉 = 0 and therefore

‖x − u‖2 = ‖(x − u0) + (u0 − u)‖2

= ‖x − u0‖2 + 2Re〈x − u0, u0 − u〉+ ‖u0 − u‖2

= ‖x − u0‖2 + ‖u0 − u‖2 ≥ ‖x − u0‖2

with equality if and only if u = u0.

Remark. Note that the above theorem says nothing about the exis-
tence of an element u0 ∈ U with the indicated properties.



Best approximation and orthogonality (3)
In fact, a best approximation of an element x ∈ V in a subspace U
need not exist.

Example. Let V be the space of all sequences (an) in K such
that an 6= 0 only for a finite number of indices n. Define an inner
product on V by letting 〈a, b〉 :=

∑
n anbn. Consider the subspace U

consisting of all sequences a = (an) in V with
∑

n an = 0. Let x :=
(1, 0, 0, . . .); we want to show that there is no best approximation of
x in U. Define un ∈ U by

un := (1,−1
n
, . . . ,−1

n︸ ︷︷ ︸
n times

, 0, 0, . . .).

Then ‖x − un‖2 = n · (1/n2) = 1/n. Hence a best approximation
u0 ∈ U for x would have to satisfy ‖x − u0‖ ≤ ‖x − un‖ = 1/

√
n for

all n ∈ N and hence ‖x − u0‖ = 0, thus u0 = x , contradicting the
fact that x 6∈ U. Exercise: Verify directly that U⊥ = {0}.



A technical lemma

Lemma. If λ ∈ C and z ∈ C are complex numbers then

λλ− 2Re(λ z) ≥ −|z |2

with equality if and only if λ = z .

Proof. Writing z = a + ib and λ = u + iv we obtain

λλ− 2Re(λ z)
= u2 + v2 − 2(au + bv)
= u2 − 2au + v2 − 2bv
= (u − a)2 − a2 + (v − b2)− b2

= (u − a)2 + (v − b)2 − |z |2 ≥ −|z |2

with equality if and only if u = a and v = b.



Orthogonal projection (1)

Let V be an inner product space,
U a finite-dimensional subspace
of V and x ∈ V an arbitrary
element of V . Then there is a
unique element u0 ∈ U with

‖x − u0‖ ≤ ‖x − u‖
for all u ∈ U. This element
is called the orthogonal projec-
tion of x onto U and is denoted
by PU(x). If (e1, . . . , en) is any
orthonormal basis of U then

PU(x) =
n∑

i=1

〈x , ei 〉ei



Orthogonal projection (2)
Proof. Choose an orthonormal basis (e1, . . . , en) of U (for example
by applying the Gram-Schmidt procedure). Each element u ∈ U
possesses a unique representation u =

∑n
i=1 λiei . It follows that

‖x − u‖2 = ‖x −
n∑

i=1

λiei‖2

= ‖x‖2 − 2Re〈x ,
n∑

i=1

λiei 〉+ 〈
n∑

i=1

λiei ,

n∑
j=1

λjej〉

= ‖x‖2 − 2
n∑

i=1

Re
(
λi 〈x , ei 〉

)
+

n∑
i=1

λi λi

= ‖x‖2 +
n∑

i=1

(
λi λi − 2Re

(
λi 〈x , ei 〉

))

Applying our technical lemma with λ = λi and z = 〈x , ei 〉, we see
that ‖x − u‖2 ≥ ‖x‖2 −

∑n
i=1 |〈x , ei 〉|2 with equality if and only if

λi = 〈x , ei 〉 for 1 ≤ i ≤ n.



Exercises

Exercise. Find min
a,b,c

∫ 1

−1
|x3 − a − bx − cx2|2dx and maximize∫ 1

−1 x3g(x) dx subject to the conditions
∫ 1
−1 |g(x)|

2dx = 1 and

0 =

∫ 1

−1
g(x) dx =

∫ 1

−1
xg(x) dx =

∫ 1

−1
x2g(x) dx .

Exercise. Find min
a,b,c

∫ 1

−1
|x3−a−bx−cx2|2e−xdx . Moreover, formu-

late and solve the corresponding maximum problem as in the previous
exercise.



A static versus a dynamic point of view
Static point of view:

I Solve the algebraic equation x3 − 3x + 1 = 0.
I Solve a system Ax = b of linear equations.
I Solve the differential equation y ′′(x) + ay ′(x) + by(x) = f (x).

I Solve the integral equation f (x) =
∫ b
a K (x , y)u(y)dy .

Dynamic point of view:
I Study the function x 7→ x3 − 3x + 1.
I Study the linear mapping x 7→ Ax .
I Study the differential operator y 7→ y ′′ + ay ′ + by .
I Study the integral operator u 7→

∫ b
a K (·, y)u(y)dy .

Conclusion: Along with elements of spaces carrying a certain struc-
ture, also study structure-preserving mappings between these spaces.
To do so, consider spaces of structure-preserving mappings them-
selves as structured spaces.



Linear mappings on infinite-dimensional vector spaces
In an infinite-dimensional setting, linear mappings can behave differ-
ently than in a finite-dimensional setting (which is typically studied
in Linear Algebra).

I If A,B : V → V are endomorphisms of a finite-dimensional
space V it may happen that AB 6= BA. However, if AB = 1
then also BA = 1 so that left-invertibility, right-invertibility and
invertibility coincide. This is no longer true if V is infinite-
dimensional.

I If A : V → V is an endomorphism of a finite-dimensional vector
space over K and if λ ∈ K then A − λ1 is not injective if and
only if A− λ1 is not surjective if and only if det(A− λ1) = 0.
If V is infinite-dimensional then the third condition does not
make sense, and the first two conditions are not equivalent in
general. Hence spectral theory becomes more complicated in
an infinite-dimensional setting (and is of extreme importance in
the study of differential and integral equations).



Spectrum of linear operators (1)

Define D : C∞(R) → C∞(R) by Df = f ′. Let us determine the
image and the kernel of D − λ 1. First,

f ∈ ker(D − λ id) ⇔ f ′ − λf = 0 ⇔ f (x) = Ceλx .

Hence every scalar λ ∈ K is an eigenvalue of D (with a one-
dimensional eigenspace). Next, F ∈ im(D − λ id) if and only if
there is a function f ∈ C∞(R) such that

F = f ′ − λf ⇔ f (x) = Ceλx +

∫ x

0
eλ(x−ξ)F (ξ) dξ.

Hence D − λ id is onto (surjective) for every scalar λ ∈ K.



Spectrum of linear operators (2)

Define I : C∞(R) → C∞(R) by (If )(x) :=
∫ x
0 f . Let us determine

the image and the kernel of I − λ id. First, f ∈ ker(I − λ id) if and
only if

If = λf ′ ⇔
∫ x
0 f = λf (x) ⇔ f = λf ′ and λf (0) = 0 ⇔ f = 0.

Hence I − λ id is one-to-one (injective) for every λ ∈ K. Hence no
scalar λ ∈ K is an eigenvalue of I . Next, F ∈ im(I − λ id) if and
only if there is a function f ∈ C∞(R) such that F = If − λf , i.e.,

F (x) =
∫ x

0
f − λ f (x) ⇔ F ′ = f − λf ′ and F (0) = −λf (0).

For λ = 0 this is the case if and only if F (0) = 0. For λ 6= 0 this is the
case if and only if f (x) = −λ−1ex/λ [F (0) + ∫ x

0 F ′(ξ)e−ξ/λ dξ
]
=

−λ−1F (x)− λ−2e−λ/x
∫ x
0F (ξ)e−ξ/λ dξ. Hence I − λ id is surjective

for all λ 6= 0, but not for λ = 0.



Spectrum of linear operators (3)

Let V be the K -vector space of all sequences (a1, a2, a3, . . .) in K .
Define the right shift R : V → V by

R : (a1, a2, a3, a4, . . .) 7→ (0, a1, a2, a3, . . .).

Given λ ∈ K , we want to investigate the solvability of the equation
(R − λ id)(x) = y , i.e.,

(−λx1, x1 − λx2, x2 − λx3, . . .) = (y1, y2, y3, . . .).

If λ 6= 0 then there is a unique solution x for any given y (namely
x ∈ V where x1 = −y1/λ and xk = (xk−1−yk)/λ for k ≥ 2). Hence
R − λ id is a bijection if λ 6= 0. If λ = 0 then R − λ id is one-to-
one, but not onto, the image of (R − λ id) being the subspace of all
sequences whose first entry is zero. This subspace has codimension
one.



Spectrum of linear operators (4)
Similarly, we can define the left shift L : V → V by

L : (a1, a2, a3, a4, . . .) 7→ (a2, a3, a4, a5, . . .).

Given λ ∈ K , we want to investigate the solvability of the equation
(L− λ id)(x) = y , i.e.,

(x2 − λx1, x3 − λx2, x4 − λx3, . . .) = (y1, y2, y3, . . .).

Given y ∈ V , we can choose x1 = ξ arbitrarily and must then have
xk+1 = yk + λxk = yk + λkx1. Thus the equation (L− λ id)(x) = y
has the general solution

(x1, x2, x3, . . .) = (0, y1, y2, y3, . . .) + ξ (1, λ, λ2, λ3, . . .)

where ξ ∈ K is arbitrary. We see that, given any number λ ∈ K ,
the mapping L − λ id is surjective, but not injective. Every number
λ ∈ K is an eigenvalue of L, with a one-dimensional eigenspace.



Spectrum of linear operators: Exercises

Exercise. Consider the left shift L and the right shift R on the vector
space of all sequences

(. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .).

For which λ ∈ K does L− λ id resp. R − λ id fail to be surjective or
injective?

Exercise. Let K = R or C, and let V be the K-vector space of all
sequences in K. Define M : V → V by

M(a1, a2, a3, . . .) :=

(
a1,

a1 + a2

2
,

a1 + a2 + a3

3
, . . .

)
.

For which λ ∈ K does M−λ id fail to be surjective or injective? Show
that M leaves invariant the subspace U of all convergent sequences.
Answer the same question as before for the restriction MU : U → U.



Continuous linear mappings
A linear mapping T : X → Y between normed spaces is called
bounded if there is a constant C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ for all
x ∈ X . For a linear mapping T : X → Y , the following conditions
are equivalent:
(1) T is bounded;
(2) T is Lipschitz-continuous;
(3) T is continuous;
(4) T is continuous at 0.
The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. Assume (4)
holds. Then for ε := 1 there is δ > 0 such that if ‖x − 0‖ ≤ δ then
‖T (x) − T (0)‖ ≤ ε. Thus if ‖x‖ ≤ δ then ‖Tx‖ ≤ 1. Hence if
x 6= 0 then ∥∥∥∥T ( δx

‖x‖

)∥∥∥∥ ≤ 1

which means that ‖Tx‖ ≤ (1/δ) ‖x‖. This last equation also holds
if x = 0. Thus T is bounded.



Spaces of operators

The set B(X ,Y ) of all bounded linear mappings is a vector space
and, in fact, a normed space with the operator norm

‖T‖op := inf{C ≥ 0 | ‖Tx‖ ≤ C‖x‖ for all x ∈ X}
= inf{C ≥ 0 | ‖T (x/‖x‖)‖ ≤ C for all x 6= 0}
= inf{C ≥ 0 | ‖Tx‖ ≤ C whenever ‖x‖ = 1}
= inf{C ≥ 0 | ‖Tx‖ ≤ C whenever ‖x‖ ≤ 1}
= sup{‖Tx‖ | ‖x‖ ≤ 1}.

Interpretation: ‖T‖op is the maximal stretching factor which the
application of T can effect.
Important special case: The dual space V ? of a normed space V
is the space of all continuous linear forms f : V → K.



Linear forms (1)

A linear mapping f : Kn → K is necessarily of the form

f (x) = a1x1 + a2x2 + · · ·+ anxn

with numbers ai ∈ K. This can be written as f (x) = 〈x , a〉. Hence
each linear form on Kn is the inner product with a unique element
of Kn.

It is a natural question to ask whether a similar statement holds for all
inner product spaces. The answer cannot be affirmative in general,
because any functional of the form 〈·, v〉 is necessarily continuous:

|〈x , v〉 − 〈y , v〉| = |〈x − y , v〉| ≤ ‖x − y‖ ‖v‖.

But even for continuous linear functionals the answer is in general
negative, as the following example shows.



Linear forms (2)

Example. Let V be the set of all sequences x ∈ `2(R) for which
only a finite number of entries is nonzero. A linear form on V is
given by

f (a) := a1 + a2 + a3 + · · · .

Then f is not continuous (why not?), hence cannot be of the form
〈·, v〉 with some v ∈ V . Another linear form on V (this times
continuous) is given by

f (a) := 1 · a1 +
1
2
· a2 +

1
3
· a3 + · · · .

But again, there is no vector v ∈ V such that f = 〈·, v〉. The reason
is that the space V is not complete. We will have to discuss the
concept of completeness.



Completeness

Definition. A sequence (x1, x2, x3, . . .) in a metric space (X , d) is
called a Cauchy sequence if d(xm, xn) → 0 as m, n → ∞. The
metric space (X , d) is called complete if every Cauchy sequence in
X converges in X .

Completeness is of fundamental importance in analysis and numerical
mathematics. For example, suppose you want to find the solution of
an (algebraic, differential, integral) equation. Often it is possible to
construct a sequence (x1, x2, x3, . . .) of approximate solutions which
(one hopes) will converge to a true solution. If the approximants
xk lie closer and closer together (i.e., form a Cauchy sequence),
completeness guarantees the existence of x := limk→∞ xk .

Definition. A complete normed space is called a Banach space. A
complete inner product space is called a Hilbert space.



Stefan Banach
(1892-1945)

David Hilbert
(1862-1943)



Examples for complete spaces

I Every finite-dimensional normed space is complete. This is a
consequence of the completeness of R and C and the fact that
convergence in Kn is componentwise convergence.

I The space C [a, b] with the norm ‖ · ‖∞ is complete. To see
this, let (fk) be a Cauchy sequence in C [a, b]. Then for each
x ∈ [a, b], the sequence

(
fk(x)

)
is a Cauchy sequence in K,

hence convergent; say fk(x) → f (x). One checks that fk → f
not only pointwise, but even uniformly on [a, b]. But the uniform
limit of a sequence of continuous functions is itself continuous.
Hence f ∈ C [a, b], and fk → f in C [a, b] (which means that
‖fk − f ‖ → 0).



Examples for incomplete spaces

I Let V be the space of all real sequences a = (a1, a2, a3, . . .)
such that ai 6= 0 for only finitely many indices i . An in-
ner product on V is defined by 〈a, b〉 :=

∑∞
k=1 akbk . Let

a(n) := (1, 1/2, 1/3, . . . , 1/n, 0, 0, 0, . . .). Then (a(n)) is a
Cauchy sequence in V which does not converge in V .

I The space C [−1, 1] with the norm ‖ · ‖1 is not complete. On
fact, the functions (fk) defined below form a Cauchy sequence
in C [−1, 1] which does not converge in C [−1, 1].



Completeness of dual spaces

Theorem. Let V be a normed space. Then V ? is complete.

Proof. Let (fk) be a Cauchy sequence in V . Fix v ∈ V . Then(
fk(v)

)
is a Cauchy sequence in K, hence convergent. Let

f (v) := lim
k→∞

fk(v).

Clearly, f is linear. Given ε > 0, there is a number N ∈ N such that
‖fn − fm‖ ≤ ε for all m, n ≥ N so that

|fn(v)− fm(v)| ≤ ε for all m, n ≥ N and all ‖v‖ ≤ 1
⇒ |fn(v)− f (v)| ≤ ε for all n ≥ N and all ‖v‖ ≤ 1
⇒ ‖fn − f ‖ ≤ ε for all n ≥ N
⇒ ‖f ‖ ≤ ‖f − fN‖+ ‖fN‖ ≤ ε+ ‖fN‖ <∞.

Hence f is bounded, i.e., is an element of V ?, and fn → f in V ?.



Completeness and closedness

Theorem. Let (X , d) be a complete metric space. Then a subspace
A ⊆ X (i.e., a subset of X equipped with the induced metric) is
complete if and only if it is closed in X .

Proof. Let A be closed, and let (ak) be a Cauchy sequence in A.
Then (ak) is a Cauchy sequence in X , hence convergent in X ; say
ak → x . Then x ∈ A = A, so that (ak) is convergent not only in X ,
but even in A. Hence A is complete.

Conversely, assume that A is complete. Assume that x ∈ A, say
ak → x with a sequence (ak) in A. Then (ak) is a Cauchy sequence
in A, hence convergent in A, say ak → a. Since a sequence cannot
possess two different limits, we have x = a ∈ A. Since x ∈ A was
arbitrary, we have A = A. Hence A is closed.



Orthogonal complements

Theorem. Let U be a closed subspace of a Hilbert space. Then
V = U ⊕ U⊥.
Proof (Riesz 1934). Let x ∈ V \U and d := inf{‖x−u‖ | u ∈ U};
then d > 0. There is a sequence (un) in U with ‖x−un‖ → d . Now

4d2 + ‖um−un‖2 ≤ 4‖x − (um+un)/2‖2 + ‖um − un‖2

= ‖2x − (um+un)‖2 + ‖um − un‖2

= ‖(x−um) + (x−un)‖2 + ‖(x−um)− (x−un)‖2

= 2‖x − um‖2 + 2‖x − un‖2 → 4d2 as m, n→∞

where we used the parallelogram equation in the step from the third
to the fourth line. Hence ‖um − un‖ → 0 so that (un) is a Cauchy
sequence, thus convergent because U is closed in V and hence com-
plete. Assume un → u0; then d = ‖x − u0‖ so that u0 is a best
approximation of x in U.



The Riesz representation theorem for Hilbert spaces
Theorem. Let V be a Hilbert space and let f ∈ V ?. Then there is
a unique vector v ∈ V such that f = 〈·, v〉.

Proof. The uniqueness is clear because if 〈x , v1〉 = 〈x , v2〉 for all
x ∈ V then necessarily v1 = v2. (Take x := v1 − v2.) Hence
only the existence of v must be shown. If f = 0 then v = 0. Let
f 6= 0. Then U := ker(f ) is a closed subspace, hence possesses
an orthogonal complement which is necessarily one-dimensional, say
U⊥ = Kξ where ‖ξ‖ = 1. Given x = u+λξ , we have f (x) = f (u)+
λf (ξ) = λf (ξ) and 〈x , ξ〉 = 〈u, ξ〉+ λ〈ξ, ξ〉 = λ. Consequently,

f (x) = λf (ξ) = 〈x , ξ〉f (ξ) = 〈x , f (ξ) ξ〉.

Hence f = 〈·, v〉 where v := f (ξ) · ξ.

Remark. The Riesz representation theorem states that a Hilbert
space is self-dual. This is exploited in Dirac’s bra und ket notation
in quantum mechanics.



Completion of a metric space (1)
If a metric space (X , d) is not complete, it can be completed by
adding more points to it (namely the missing limits of nonconvergent
Cauchy sequences in X ). This can be done in the following way:

I Call two Cauchy sequences (xk) and (yk) in X equiva-
lent if d(xk , yk) → 0 as k → ∞. Denote by X̂ :=
{Cauchy sequences in X}/ ∼ the set of resulting equivalence
classes.

I Define a metric d̂ on X̂ by d̂([xk ], [yk ]) := limk→∞ d(xk , yk).
This limit exists because |d(xm, ym)− d(xn, yn)| ≤ d(xm, xn) +
d(ym, yn) → 0 so that

(
d(xn, yn)

)
is a Cauchy sequence in R,

hence convergent. The limit is also independent of the particular
choice of representatives because if (xn) ∼ (ξn) and (yn) ∼ (ηn)
then |d(ξn, ηn)− d(xn, yn)| ≤ d(ξn, xn) + d(ηn, yn)→ 0. Thus
d̂ is a well-defined mapping. It is easy to check that d̂ is indeed
a metric on X̂ .

I Interpret (X , d) as a subspace of (X̂ , d̂) by identifying x ∈ X
with [(x , x , x , . . .)].



Completion of a metric space (2)

I Then X is dense in X̂ . In fact, let ξ ∈ X̂ , say ξ =
[(x1, x2, x3, . . .)]. Let x (n) = [(xn, xn, xn, . . .)] ∈ X . Then
d̂(x (n), ξ) = limk d(x (n)

k , ξk) = limk d(xn, xk) → 0 as n → ∞
so that x (n) → ξ.

I The space X̂ thus constructed is complete. In fact, let (ξ(n))
be a Cauchy sequence in X̂ . Since X is dense in X̂ , there
is x (n) = [(xn, xn, xn, . . .)] in X such that d̂(ξ(n), x (n)) <

1/n. Then d(xm, xn) = d̂(x (m), x (n)) ≤ d̂(x (m), ξ(m)) +

d̂(ξ(m), ξ(n))+ d̂(ξ(n), x (n)) < (1/m)+ d̂(ξ(m), ξ(n))+(1/n)→
0 as m, n → ∞. Hence (xn) is a Cauchy sequence in X . Let
ξ := [(x1, x2, x3, . . .)] ∈ X̂ . Then d̂(ξ(n), ξ) ≤ d̂(ξ(n), x (n)) +

d̂(x (n), ξ) < (1/n) + d̂(x (n), ξ)→ 0 as n→∞.

We have shown that X̂ is a completion of X , that is, (X̂ , d̂) is an
extension of (X , d) and is complete, and X is dense in X̂ .



Completion of a metric space (3)

Theorem. Let f : X → Y be a uniformly continuous mapping
between metric spaces, and let X̂ and Ŷ be completions of X and
Y . Then there is a unique continuous extension f̂ : X̂ → Ŷ of f ,
and f̂ is itself uniformly continuous.
Proof. Being a uniformly continuous function, f maps Cauchy
sequences to Cauchy sequences. Hence we can (unambiguously)
define f̂ (limn→∞ xn) := limn→∞ f (xn) (and indeed must do so to
make f̂ continuous). A routine verification shows that f̂ is indeed
uniformly continuous.

Applying the above theorem to the identity mapping X → X shows
that any two completions of X are isometric (with a unique isometry
extending the identity map of X ). Hence the completion of a metric
space is unique up to isometry.



Completion of normed spaces and inner product spaces
Theorem. Let (X̂ , d̂) be a completion of (X , d). If X is a normed
space then so is X̂ . If X is an inner product space then so is X̂ .

Proof. Let (X , d) be a normed space so that d is translation-
invariant and homogeneous. Then

d̂(x̂+ â, ŷ+ â) = lim
n→∞

d(xn+an, yn+an) = lim
n→∞

d(xn, yn) = d̂(x̂ , ŷ)

and

d̂(λx̂ , λŷ) = limn→∞ d(λxn, λyn) = limn→∞ |λ| d(xn, yn)

= |λ| limn→∞ d(xn, yn) = |λ| d̂(x̂ , ŷ).

Hence d̂ is also translation-invariant and homogeneous, hence is
derived from a norm, namely |||x̂ ||| = d̂(x̂ , 0) = limn d(xn, 0) =
limn ‖xn‖. Thus X̂ is a normed space. If (X , d) is even an inner
product space, then ‖ · ‖ satisfies the parallelogram law. But then so
does ||| · |||, so that X̂ is also an inner product space.


