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What is it all about?

« For many problems / tasks in (applied) mathematics good linear
methods are available.

« »Linear« essentially means »using Linear Algebra.

« However applied mathematicians are often forced to solve nonlinear
problems.

* Instead of designing new methods for the solution one can
— try to »transform« the problem into a linear one,
— solve the transformed problem,

— and take the »inverse transform« as a solution of the original
problem.

* In the next two lectures one way to bring this very vague approach
into an applicable form is presented.
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What is it all about?
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What is it all about?

Tasks appearing in the transform-solve-pull back approach:

« Find a good transform mapping by checking the »quality« of many
candidates.

« Effectively parameterize sets / families of candidate mappings.

« Determine sets / families of candidate mappings, such that it is not
too difficult / slow to perform computations in the transformed space
H.
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Introduction and reminder
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Introduction and reminder

Vector spaces of functions

e For a set X # () consider the functions on X:

Fun(X,R) :={f: X — R: f arbitrary}.

e Pointwise addition and scalar multiplication turns Fun(X,R) into
a real vector space:

(f+9)(z) = f(z)+ g(x) for f,g € Fun(X,R),
(Af)(x) := Af(x)) for f € Fun(X,R), A € R.
e The dimension of Fun(X,R) is finite if and only if X is a finite set.

REMARK: Virtually everything explained in this talk can be done
over the complex numbers as well.




Introduction and reminder

Vector spaces of functions

Frequently we don’t want to consider all functions on a set X:

e Let P be a property of functions such that: if f, g possess property P,
then f 4+ g and A\f possess property P as well. Then

P(X,R):={f: X — R: f posesses property P}
is a vector subspace of Fun(X,R).

e Examples of such properties P:

— continuity (X a metric space),

— (partial) differentiability (X C R"™ open),

— integrability (X a measurable set),

— analyticity (X C R open). 10
e




Introduction and reminder

Pointwise convergence

e A sequence (f;)ien in Fun(X,R) is said to be pointwise convergent if the
limit
lim f;(z)
11— 00
exists for every x € X. The function

f(x) == lim fi(x)

12— 00
is then called the pointwise limit of (f;)ien.

e If V is a vector subspace of Fun(X,R) and f is the pointwise limit of the
sequence (f;)ien, where f; € V for all i, then f needs not be an element

of V.
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Introduction and reminder

Pointwise convergence

EXAMPLE:
o V=0C(a,b],R) :={f:]a,b] = R: fis continous},
o f:= PHE i=1,23,...
o f(r)=1forx >0, f(0)=0, f(z)=—1for z <O0.
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Introduction and reminder

Inner Product Spaces and Hilbert Spaces

DEFINITION: An inner product space is a vector space H owver the reals R
equipped with a symmetric, positive definite, bilinear form

Hx H—R2Y (x,y) — (z,y)

called scalar product.

INEQUALITY OF CAUCHY-SCHWARZ: Fuvery positive semidefinite, bilinear form
(+,+) on a real vector space H has the property

Vo,y € H (z,y)* < (z,7){y,7)

In an inner product space (H, (-, -)) equality holds if and only if x,y are linearly
dependent.

13




Introduction and reminder

Inner Product Spaces and Hilbert Spaces
e The scalar product gives rise to the norm ||z| := \/(x, x)
and hence to the metric d(z,y) := ||z — y||.
e The scalar product, the norm and the metric are continuous functions.

e Addition and scalar multiplication are continuous maps
+:HxH—H, s:RxH— H;

here H x H and R x H are equipped with the relevant product metrics.

e In an inner product space H the notion of orthogonality
of elements x,y € H is defined:

rly & (x,y) =0.
D
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Introduction and reminder

Inner Product Spaces and Hilbert Spaces

EXAMPLE:

o C([a,b],R):={f:]a,b] - R: f is continuous},

b
e (f,9) =] fgdt,

e In C([—1,1],R) the sequence
fr = """t k=1,2,3,...,

is Cauchy but not convergent.

15



Introduction and reminder

Inner Product Spaces and Hilbert Spaces

DEFINITION: A Hilbert space is an inner product space (H, (-, -)) that is complete
with respect to the norm ||z|| := \/(z,x): every Cauchy sequence (xj)ren in H
has a limat.

EXAMPLE:

?:={f:N=R: > f(k)?* existiert},
k=1

* (f.9) = X S(R)o(k)

o0
1 1
® (E)kEN € €2 because Z L2 — D. Hilbert
- 1862 — 1943
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Introduction and reminder

Inner Product Spaces and Hilbert Spaces

EXAMPLE:
o L?([a,b],R) := {f: f?: [a,b] — R Lebesgue-integrable}, with

f:=1{g:[a,b] = R): f, g coincide on a set of measure 0}.

. b
o (f.g)= [ fgdt.
e Note that the map
C(la,b],R) — L*([a,b],R), f > f

is linear, injective and continuous.
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Introduction and reminder

Completion

THEOREM: For every inner product space (H, (-,-)) there exists a
Hilbert space (H, |-,-]) possessing the properties

e H is a dense vector subspace of H , that is every element of H is the limit
of a Cauchy sequence in H.

e The scalar product [-,-] is an extension of the scalar product (-,-).

(ﬁ, -,+]) is called the completion of (H,(-,-)); it is uniquely determined by
H

(H, ("))

EXAMPLE: The completion of C([a,b],R) is L?([a,b], R).
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Introduction and reminder

REPRESENTATION THEOREM OF RIESZ: Let (H, (-,-)) be a Hilbert space.
Then every continuous linear mapping T' : H — R has the form

T(x) = (x,v)

for some v € H uniquely determined by T.
REMARK: For v € H such that ||v|| = 1 the mapping

p(x) = (z,v)v

is the orthogonal projection onto the line Ruv.
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Reproducing Kernel Hilbert Spaces

DEFINITION: Let X # () be a set.
A reproducing kernel Hilbert space (RKHS) on X is a Hilbert space (H,(-,-))
possessing the properties

1. H ist a vector subspace of Fun(X,R).

2. For every x € X the evaluation functional e, : H — R, h — h(x)
18 continuous.

e In a RKHS addition and scalar multiplication are the pointwise
operations of functions on X.

e Convergence in H implies pointwise convergence:

Vee X (lim hg)(x)= lim hg(x).

k—oo k—oo
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Reproducing Kernel Hilbert Spaces

EXAMPLE:

o ?:={f:N—=R: Y f(i)?* exists} is a vector subspace of Fun(N, R).
k=1

e For every n € N the evaluation functional e, (f) := f(n) is continuous:

IfIl = \ Zf(i)2 > \/f(n)2.

len(f)

hence

len||op := sup( il : fel*\{0}) =1.

21




Reproducing Kernel Hilbert Spaces

ExAMPLE: Gaussian RKHS

o Let X ={x1,...,2,} CR™ be a set with n elements.
n [EXAP
o H:=>S Rk;, kij(z) :=e  #2 ,h>0, | - ||]2 the Euclidean norm on R™.
i=1

o {ky,...,k,} forms a basis of H.

2
. ||$i_$j||2

e Scalar product: bilinear extension of (k;, k;) :=e — »?

25
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An element of H in the case m = 1:

f(z) = 2e=@+25)° 4 0.9e=(2-05)" _ 1 5= (==3)"

05

o

05

A+

-1.5
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Reproducing Kernel Hilbert Spaces

ExXAMPLE: Gaussian RKHS

e The linear map T : R" — H, (A1,...,A\n) — > A\;k; is continuous,
i=1
using the 1-norm on R™: ||T'||op < n.

n
e Therefore the minimum g := min(|| >° Nk;|| : D [\i| = 1) exists.

n
1=1 =1

n

e The inequality > |A;| < p= 1| Y Xik;| vields the completeness of H.

1=1 1=1

e The evaluation functionals e, are continuous: |le;|lop < -+

23



Reproducing Kernel Hilbert Spaces

Intermezzo: The last results are not specific to the Gaussian RKHS.

THEOREM: A normed space (H, || - ||) of finite dimension is complete.
More specific: for every basis (by,...,b,) of H convergence of a sequence

’LGN — zEN

||M:

is equivalent to the convergence of the sequences (\;;)ien of coefficients.

Moreover every linear map T : H — Y into an arbitrary normed space
(Y, || - ly) is continuous.

REMARK / HINT: To prove the theorem just rewrite the arguments given for
the Gaussian RKHS in general form using the continuity of the norm function,
of addition and of scalar multiplication. (recommendable exercise).

24




Reproducing Kernel Hilbert Spaces

AN ALMOST NON-EXAMPLE:

e C([0,1],R):={f:[0,1] > R: f is continuous}, ( ffg dt.
e The evaluation functional e; ist not continuous: for f; := /2i + 1la* we

have || f;|| =1 and e1(f;) = V2i + 1, thus ||le1]|op = 0.
e Of course C([0,1],R) is not complete, hence no Hilbert space ... grumpf.

e Proper non-examples of RKHS are hard to write down explicitely:.
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Reproducing Kernel Hilbert Spaces

THEOREM: Let H be a RKHS on X.
Then there exists a unique function K : X X X — R such that

e Vyec X k,:=K(,y)e€H,
o Vxe X e,=(,k;).

The function K 1is called reproducing kernel of H and has the properties:
1. Ve,ye X K(x,y) = K(y,z),

2. For every n-tupel (x1,...,z,) C X™ of elements of X the matrix
Klzy,...,xn) = (K(x,25))i; € R™™ is positive semidefinite:

Yo € R" v'Klzy,...,z,]v > 0.

26




Reproducing Kernel Hilbert Spaces

PROOF:

e By the theorem of Riesz for every x € X there exists a function k, such
that h(x) = e, (h) = (h,k,) for all h € H.

e Define K(x,y) := ky(x).

e For v = (vy,...,v,) € R™
VK [x1,. ., xnv = >0 > viK(xg,x;)v;
i=1j=1
= D) rUi(k'wa)fUJ
1 =1 7=1
= (2 viks, 2 kjvu;) 20
i=1 j=1

27




Reproducing Kernel Hilbert Spaces

EXAMPLES:

e The reproducing kernel of ¢ is the function

K:NxN—=R, (n,m)—0forn#m, (n,n)— 1.

e The reproducing kernel of the Gaussian RKHS is the function

_llz—yli3

K(x,y) :=e 2

e For pairwise distinct points x1,...,z, € R™ the matrices

_||a:?;—;cj||%
e R )ije{l,..n}

are positive definite.

28



Reproducing Kernel Hilbert Spaces

Embedding the set X:
Let H be a RKHS on X with reproducing kernel K and consider the map

¢o: X - H, y—ky,=K(y).

e Vr,y € X (¢(x),¢(y)) = K(z,y).

e The map ¢ is injective if and only if for all points x1,x9 € X, 1 # 29,
there exists a function h € H such that h(xz1) # h(z2).

e If ¢ is injective the equation

d(z,y) = ks — kyll = VE(z,2) + K(y,y) — 2K (z,y)

defines a metric on X.

29




Reproducing Kernel Hilbert Spaces

EXAMPLE: Gaussian RKHS (continued)
The embedding (injectivity !)

2
[z —=;3

¢:X:{$1,...,$n}—>H,:Eil—)ki:e_ h2

leads to the metric

s —x ;113
d(x;,x;) 2—2e  nZ2

Since X C R™ is arbitrary, the formula actually defines a metric on R™.
The question arises whether one can define a Gaussian RKHS on R™.

e Note that the distance geometry of X with respect to the Euclidean dis-
tance is different from the one given by d.

e Even if z; = Az; the images k; and k; are linearly independent;
the map ¢ thus is highly nonlinear.
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Reproducing Kernel Hilbert Spaces

PROPOSITION: The functions k,, x € X, in a RKHS H are linearly independent
iof and only if the reproducing kernel K of H is positive definite.

In particular: ¢ : X — H is injective if K|x1,xs] is positive definite for all
x1,22 € X, T1 # To.

PROOF:

mn
e The linear relation ) A, k,, = 0 is equivalent to
i=1

0 = (O Ay ks, )\a;j kwj>
=) =
= > ANNK (x4, 25)
1,7
— (Al')"'J)\n)K[wl,...,l’n](Al,...,)\n)t.

e Apply that for n = 2.
-
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Reproducing Kernel Hilbert Spaces

THEOREM: For a RKHS H on X the vector space

U := ZRkw

rzeX

lies dense in H: the closure U of U equals H.
In particular: If X is finite, then H = U and dim(H) < | X|.

PRrROOF: If U # H there exists h € H such that h L u for all u € U.
In particular h(x) = (h, k,) = 0 for all x € X. Hence h = 0 — contradiction.

REMARKS:
e This result is the reason for the term reproducing kernel.
e In general the functions {k, : © € X} are linearly dependent.

e The upper bound for the dimension is attained in the case of
a Gaussian RKHS on a finite set.
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Kernel Functions

DEFINITION: Let X # () be a set.
A function

K: XxX—=R

s called kernel function on X if it 1s symmetric, and if for every n € N
and for every n-tupel (x1,...,x,) € X™ of elements of X the matriz

Klzy,...,z,] = (K(x;,24));; € R™"
18 positive semidefinite:
Yo e R" v'K[zq,...,z,]v > 0.

REMARK: It suffices to check the required positive semidefiniteness for
n-tupels of pairwise distinct elements x; € X.
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Kernel Functions

Kernel functions on a finite set X

Let X ={xy,...,z,}, n € N.
Every kernel function on X can be obtained by chosing a positive semidefinite
matrix A = (a;;) € R"*" and defining

K(CCZ',.I‘j) c= Q4.

It is not necessary to consider subsets of X.

Although in applications one usually considers finite sets X only, it is necessary
to know kernel functions on infinite sets for the following reason:

o frequently X C R™, the values K(z;,z;) should then be related to the
components of the z; € R™,
e the position of X in R" however is usually to some extend arbitrary.

34



Kernel Functions

THEOREM:

o The pointwise sum Ki + Ko of two kernel functions on X s a kernel
function on X.

o The pointwise product Kq - Ko of two kernel functions on X is a kernel
function on X.

o The pointwise product A\K of a kernel function K on X with a non-negative
real number A\ is a kernel function on X.

In particular: the set KK(X) of kernel functions on X # 0 together with pointwise
addition and multiplication forms a commutative semiring.

REMARK: Only the proof of the second statement is not straightforward. One
has to show that the Schur product (a;;)©(b;;) = (as;b;;) of positive semidefinite
matrices is positive semidefinite.
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Kernel Functions

mn

COROLLARY: For K € K(X) and every polynomial p(X) = Y a; X* with
i=0
non-negative coefficients, the function

p(K) =) a;K’
1=0

is a kernel function on X.

According to the corollary the functions
K(z,y) := ((z,y)2 + )% ¢>0,deN

are kernel functions on X = R™; here (x,y)2 denotes the standard scalar
product on R™, which is a kernel function.
They are widely used in Data Mining and called polynomzal kernels of degree d.
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Kernel Functions

PROPOSITION: Let (K;);en be a pointwise convergent sequence of kernel
functions on X, then the (pointwise) limit

K(:Ua y) ‘= zligolo Ki(xa y)

1s a kernel function on X.

COROLLARY: Let K € K(X) be a kernel function with values in the set
UCR. Let f : U — R be a function defined by a power series with

m .
non-negative coefficients: f(u) = Y a;u’. Then the pointwise limit
i=0

& @)

fK) =) aK"

1=0

1s a kernel function on X.
37



Kernel Functions

An application of the last corollary yields another kernel function important in
Data Mining: for every h € R the function

|z —yll?
K(z,y):=e # =

h2

is a kernel function on X = R" called the Gauf$ kernel of bandwidth h.

In the proof the following auxiliary result is used:

PROPOSITION: For every kernel function K € KC(X) and every function
f: X — R the function

Ky(x,y) == f(x)K(z,y)f(y)

1s a kernel function.

38




Kernel Functions

PROOF:
()\1, c ooy )\n)Kf [5131, e ooy CE‘n]()\l, e ooy )\n)t — Z )\zf($z)K(a?J,$@)f($J)/\J
@]
= (flz)M, .., f@n) ) Kz, 2] (f@) A - flzn)An)®.
PROOF
_llz—yll” _(zz) oz _ (w.)
® C h? = e h?2 e~ h?Z e n?

e ¢” can be expressed as a power series with positive coefficients,

2 (-’B,y) . R
e hence e“ »2  1is a kernel function.

e Use the proposition to get the result.
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Kernel Functions

Ordering the set of kernel functions

e The pointwise difference K7 — K5 of kernel functions on X in general is
not a kernel function.

e Partial ordering on K(X): K1 < Ky & Ky — K; € K(X).

- VK eK(X) K<K.
—VKl,KQEIC(X) Ki<KoNKy <Ky = K=K,
— VK, Ky, K3 e K(X) Ki <KyANKy; <Kz = K; <Ks.

e The ordering is compatible with the algebraic operations:

—VK,Kl,KQEIC(X) Ki<Ky, = Ki+K<Ky+ K.
—VK,Kl,ngﬁ(X) Ki<Ky, = Ki- K< Ky K.
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The Theorem of Aronszajn — Moore

THEOREM (E.H.MOORE, N.ARONSZAJIN (1935/1950)): Let X # 0 be a set.

For every kernel function K on X there exists a unique reproducing kernel
Hilbert space H(K) on X having K as its reproducing kernel.

Let H(X) be the set of RKHS on X. The map
K(X)— H(X), K— H(K)
1S bijective.

N. Aronszajn
(1907 — 1980)

E. H. Moore
(1862 — 1932)
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The Theorem of Aronszajn — Moore

The main steps of the proof of the existence of H(K).

e Consider the vector space U := > Rk, k, := K(-,x), and define a
zeX
bilinear form via

<Z AikzaZﬂj Z)\zﬂg :I:’L)xj

i=1 j=1

e Show that this bilinear form is positive definite.

e Show that the completion H of (U, (-,-)) is a RKHS.

e Show that the reproducing kernel of H equals K.
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The Theorem of Aronszajn — Moore

ExAMPLE: Gaussian RKHS on R™

According to the proof of the theorem of Aronszajn-Moore one can contruct the
Gaussian RKHS on R™ by taking the completion H of the vector space

ESE
= E Re h?2

yeR™

with respect to the inner product

n /02 F 2
le—y7 135 lyi—v;ll3

<Z -1 y1||2 ZMJ hZj > = i)\ﬂuje_ h2
i,]

=1

The first concrete description of the functions f € H thus obtained seems to
have been given as recently as in the year 2006.
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The Theorem of Aronszajn — Moore

EXAMPLE: Polynomial RKHS on X C R™

e Consider K(z,y) := ((z,y)2 +¢)%, ¢>0,d € N,
r=(x1,..,Tm), ¥y = (Y1,---,Ym) € R™.

e The functions k, = K (-,y) are linear combinations of monomial functions

m(x) =x7" -...- x5 of degree < d, therefore

d

dim(H Z(ere—l) Z(mm_+1ee'

m-+e—1

. ) with equality

e In the case ¢ =0: dim(H(K)) < (
for X = R™.

e If X contains a nonempty open subset of R™,
then ¢ : X — H(K) is injective.
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The Theorem of Aronszajn — Moore

EXAMPLE: Polynomial RKHS of degree d = 2 on R?
e Consider K(z,y) := (z,9)3, = (x1,22),y = (y1,y2) € R?.
e The monomial functions z?, 2, x122 form a basis of H(K).

o k, = y?w + y3x3 + 2y1yow1 7o is the unique linear combination of k, with
respect to the monomial basis..

e The embedding ¢ : R? — H(K) is therefore essentially equal to the map:

R? — R?, (y1,12) = (V3,93 2012).
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The Theorem of Aronszajn — Moore

EXAMPLE: Polynomial RKHS of degree d = 2 on R? The image of to the map:

R? = R?, (y1,y2) = (V7. 93, 201Y2).-
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Further Reading — introduction to the fie

H. Knaf, Kernel Fisher discriminant functions — a concise and
rigorous introduction, Berichte des ITWM 117 (2007).

— Full proofs of all results mentioned in the present slides (except
the ones in the introduction) can be found in this report.

« J.H. Manton, P.-O. Amblard: A Primer on Reproducing Kernel Hilbert
Spaces, Foundations and Trends in Signal Processing Vol. 8 (2015).
(Preprint in arXiv)

* V. I. Paulsen, M. Raghupathi: An Introduction to the Theory of
Reproducing Kernel Hilbert Spaces, Cambridge Studies in
Advanced Mathematics 152 (2016). (Preprint in arXiv)

« J.S. Taylor, N. Cristianini, Kernel Methods in Pattern Analysis,
Cambridge University Press 2004.
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Further Reading — scientific articles

N. Aronszajn: Theory of reproducing kernels, Trans. Amer. Math.
Soc. 68, (1950).

|. Steinwart et al.: An explicit description of the reproducing kernel
Hilbert spaces of Gaussian RBF kernels, Los Alamos Report LA-UR
04-8274 (2006).
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