
An Introduction to Functional Analysis
through Applications

Abstracts of the lectures

Lecture 1: The Historical Development of Functional Analysis
Lecture 2: From Linear Algebra and Calculus to Functional Analysis
Lecturer: Karlheinz Spindler

The development of functional analysis at the beginning of the 20th century
marks a move towards a more abstract approach to mathematics which was
also felt in neighboring areas such as set-theoretical topology, integration
theory and linear algebra and which led to a reappraisal of basic mathe-
matical concepts (numbers, functions, foundations of geometry). However,
higher abstraction was not a goal in itself; pursued by protagonists like
Fredholm, Volterra, Hilbert, Riesz, Banach and others, it developed quite
naturally from concrete problems in analysis and physics. The two talks
will clarify this historical development and will also identify examples from
undergraduate lectures such as analysis and linear algebra which lead to
questions later pursued in functional analysis.

Lecture 3: Reproducing Kernel Hilbert Spaces
Lecture 4: Kernel methods in Data Mining
Lecturer: Hagen Knaf

The central objects of the two talks are Hilbert spaces H, whose elements
are functions f : X → R on a set X. Addition and scalar multiplication
in H are the pointwise operations with these functions and the scalar pro-
duct on H is required to give continous evaluation functionals ex : H → R,
ex(f) := f(x), for every point x ∈ X. These so-called Reproducing Ker-
nel Hilbert Spaces (RKHS) are tightly connected to the class of positive
semidefinite, symmetric functions K : X ×X → R, also called kernel func-
tions. In the first talk the relationship between Reproducing Kernel Hilbert
Spaces and kernel functions will be explained, culminating in the theorem
of Aronszajn-Moore, that gives a complete overview over all RKHS.



An important feature of RKHS from the viewpoint of applications is the
existence of an injective map Φ : X → H with the property

〈Φ(x),Φ(y)〉 = K(x, y) for all x, y ∈ X, (1)

where K : X ×X → R is a kernel function attached to H. In Data Mining
this feature can be used to perform nonlinear data analysis tasks effectively:
as an example consider a data set X ⊂ Rn subdivided into r ≥ 2 disjoint
groups. In Discriminant Analysis the task consists of determining hypersur-
faces S1, . . . , Sr−1 ⊂ Rn that separate the groups in an optimal way. Instead
of solving a corresponding nonlinear optimisation problem in Rn, one can
first embed X via the map Φ : X → H into a RKHS derived from a suitable
kernel function K : X ×X → R, determine hyperplanes H1, . . . ,Hr−1 ⊂ H
that separate the groups in H, which can be done using linear techniques,
and pull the result back to Rn: Si := Φ−1(Hi). Due to the equation (1) in
this procedure one actually never has to work in H but can stay in Rn. In
the second talk the details of the procedure just sketched are given and an
example is discussed.

Lecture 5: Functional Analysis and Partial Differential Equations
Lecture 6: Functional Analytic Foundations of Numerical Methods
Lecturer: Thomas Lorenz

Partial differential equations occur in many applications in physics, che-
mistry, quantitative finance and the engineering sciences. However, explicit
solution formulas are hardly available. Standard methods like the separa-
tion of variables, Green functions or integral transformations are usually
restricted to very special cases in regard to the geometry or the equations.

Functional analysis offers a way out for some partial differential equa-
tions. The key idea is based on re-formulating the �classical� differential
equation as an integral equation. In contrast to ordinary differential equati-
ons, we cannot apply the fundamental theorem of calculus here because the
considered functions depend on more than one real variable. Hence, Gauß’
theorem will take its role in the general setting – together with arbitrarily
chosen test functions.
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The integral problem with arbitrary test functions looks much more ab-
stract at first glance, but it seizes many familiar ideas from linear alge-
bra and adapts them to complete infinite-dimensional vector spaces with a
scalar product (called Hilbert spaces). Pursuing these ideas, we derive the
Lax-Milgram theorem which lays the basis for solving elliptic differential
equations. This theorem is not just a theoretical tool, but opens the door
to approximating the desired solution (which lives in an infinite-dimensional
space) by a sequence of auxiliary solutions living in finite-dimensional spaces.
Thus, it is the starting point for the well-established finite element methods,
that are addressed in the next lecture.

Lecture 7: Computer Workshop on Numerical Methods
Lecturer: Alexander Ekhlakov

Mathematical models of engineering systems are often characterized by com-
plex boundary value problems for partial differential equations posed in
geometrically complicated regions. These problems are not amenable to an
analytical treatment, but require numerical methods such as the finite ele-
ment method, which turns out to be one of the most powerful ways to find
approximative solutions of partial differential equations. It is based on the
idea that every system is physically composed of different parts and hence
its solutions may be also represented in parts. Thus the domain of the boun-
dary value problem is divided into geometrically simpler subdomains, called
finite elements, connected by a finite number of preselected points, called
nodes. The unknown variables (for example, temperatures or displacements)
over each finite element are approximated by linear combinations of basic
functions and undetermined coefficients. Algebraic relations between these
coefficients are obtained by governing equations, often in a weighted-integral
sense, over each element. The unknown parameters represent the values of
unknown variables at nodes. The algebraic relations from all elements are
assembled using boundary conditions, continuity and equilibrium conside-
rations.

While the previous lectures dealt with the functional analytic foundati-
ons of the finite element method, the computer workshop will give a “hands
on” feeling for the practical use of this method. The main steps of the finite
element method and their computer implementation will be demonstrated
and applied to simple mechanical models.
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Lectures 8+9: Hilbert Space Methods in Quantum Mechanics
Lecturer: Detlef Lehmann

In the first talk we review the basic physical facts which led to the discovery
of quantum mechanics and we list the postulates of quantum mechanics.

In the second talk we apply these postulates to the hydrogen atom and
we present the calculation of the eigenfunctions and eigenvalues of the Schro-
edinger equation in the presence of a Coulomb potential. This then leads to
a full description of the observed energy spectrum of the hydrogen atom.

Lecture 10+11: Martingales and Their Application in Mathematical
Finance

Lecturer: Claas Becker

Martingales are an important concept in modern probability theory.
A sequence (Xn) of random variables is called a martingale with respect to
an increasing sequence (An) of sub-σ-fields if

E(Xm|An) = Xn ∀n ≤ m .

E(X|A) denotes the conditional expectation of a random variable X with
respect to a sub-σ-field A.
From a Hilbert space perspective, conditional expectations are orthogonal
projections onto closed subspaces. This provides an elegant way of illustra-
ting some properties of martingales. In mathematical finance, the price of
any future payoff can be represented as a martingale.

Lecture 12: Functional Analysis and Control Theory
Lecturer: Karlheinz Spindler

One historical source of functional analysis was the calculus of variations,
dealing with optimization problems in function spaces. Functional analysis
helped to clarify the distinction between different types of extrema and the
precise meaning of finding “best” solutions to variational problems. The mo-
dern counterpart of the calculus of variations, optimal control theory, deals
with the problem of steering a system to a desired target state in an optimal
way, and here also functional analysis plays an important role. The talk will
lead up to and motivate Pontryagin’s Maximum Principle, the crowning glo-
ry of 250 years of work in the calculus of variations and one of the highlights
of 20th century mathematics. The lecture will be enhanced by computer de-
monstrations developed by 4th semester students in a programming project
within an introduction to control theory.
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