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Dual spaces of the classical Banach spaces (1)

Given a normed space V , we denote by V ? its dual space. Recall
that V ? is the space of all continuous linear mappings f : V → K.
Let us look at some examples!

I We have (Kn)? = Kn in the sense that each (continuous) linear
mapping Kn → K is of the form x 7→ a1x1 + · · · + anxn with
a ∈ Kn.

I If V is a Hilbert space then V ? = V in the sense that each
continuous linear mapping V → K is of the form x 7→ 〈x , v〉
with a fixed vector v ∈ V .

I As a special cases, each continuous linear mapping f : `2 → K
is of the form x 7→ a1x1 + a2x2 + a3x3 + · · · with a ∈ `2.

I Let p ≥ 1. Let q := p/(p − 1) so that (1/p) + (1/q) = 1.
(If p = 1 then q = ∞.) Then (`p)? = `q in the sense that
each continuous linear mapping `p → K is of the form x 7→
a1x1 + a2x2 + a3x3 + · · · with a ∈ `q.



Dual spaces of the classical Banach spaces (2)

I To determine (`∞)? is more complicated and requires some mea-
sure theory.

I Let p ≥ 1. Let q := p/(p − 1) so that (1/p) + (1/q) = 1.
(If p = 1 then q = ∞.) Then

(
Lp(I )

)?
= Lq(I ) in the sense

that each continuous linear mapping Lp(I ) → K is of the form
f 7→

∫
I f (x)g(x) dx with g ∈ Lq(I ).

I The dual of C (I ) is the space of all regular Borel measures on
I in the sense that each continuous linear functional C (I )→ K
is of the form f 7→

∫
I f dµ for such a measure µ.

Exercise. Let c0 be the space of all sequences in K which converge
to zero. Show that c0 is a closed subspace of `∞ (and hence a Banach
space) and show that (c0)′ = `1 in the sense that each continuous
linear mapping c0 → K is of the form x 7→ a1x1 + a2x2 + a3x3 + · · ·
with a ∈ `1.



Extensions of linear functionals
Let V be a normed space and let U be a subspace of V . For each
element F ∈ V ?, the restriction f = F |U is an element of U? with

‖f ‖ = sup{F (u) | u ∈ U, ‖u‖ ≤ 1}
≤ sup{F (v) | v ∈ V , ‖v‖ ≤ 1} = ‖F‖.

Conversely, we can ask whether or not a given element f ∈ U? can
be extended to an element F ∈ V ?. That this is so is the contents
of the famous Hahn-Banach theorem.

Hahn-Banach Extension Theorem. Given a normed space V , a
subspace U and a continuous linear functional f : U → K, there is
a continuous linear functional F : V → K such that F |U = f and
‖F‖ = ‖f ‖.

This theorem was originally proved (in 1927) only for K = R. There
are many generalizations, variations and refinements of this theorem.



Hans Hahn
(1879-1934)

Stefan Banach
(1892-1945)



Weak topologies

The unit sphere {x ∈ V | ‖x‖ ≤ 1} of a normed space V is bounded
and closed. If V is finite-dimensional this is equivalent to compact-
ness. If V is infinite-dimensional, this is no longer true. On the
other hand, compactness is a very desirable property; so one may
try to weaken the topology to make the unit sphere compact. The
weak topology on V is defined by letting vi → v if and only if
f (vi )→ f (v) for all f ∈ V ?. On the dual space V ? an even weaker
topology can be defined, the so-called weak? topology. In this topol-
ogy we have fi → f if and only if fi (v) → f (v) for all v ∈ V
(pointwise convergence).

Banach-Alaoglu Theorem (1940) Let V be a Banach space. Then
the unit sphere in V ? is weak?-compact.
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Convexity

A subset C of a real vector space V is called convex if it contains,
with any two points p and q, also the line segment

{(1− t)p + tq | 0 ≤ t ≤ 1}.

Intuitively, this means that C has no holes or indentations.

I The intersection of any family of convex sets is convex again.
I Any affine image of a convex set is convex again.
I If V is a topological vector space and if C ⊆ V is convex, then

the closure C is convex again.

Definition. Let X be an arbitrary subset of a real vector space V .
The convex hull of X , denoted by conv(X ), is the unique smallest
convex set containing X (namely, the intersection of all convex sets
containing X ).



Control systems

Controlled dynamical system: ẋ(t) = f
(
x(t), t, u(t)

)
I x(t) = system state at time t
I u(t) = value of the external control variable at time t
I f = function which describes the time evolution of the system
I If f does not explicitly depend on time, the system is called
autonomous.

I Once the function t 7→ u(t) is chosen, we simply have a nonau-
tonomous system

ẋ(t) = F
(
x(t), t

)
where F (x , t) := f

(
x , t, u(t)

)
.

However, choosing the control u appropriately is the central task
in control theory.



Example 1: Use of an insecticide

Control system:
ẋ(t) = k · x(t)− u(t)

where

x(t) = size of an insect population at time t
u(t) = application rate of an insecticide

k = natural growth rate of the insect population
(assumed as known)

Control problem: Choose the function u to “influence” or “control”
the insect population in a desired way (for example, to extinguish the
population before the apple bloom starts).



Example 2: Rocket car

Control system:[
ẋ(t)
ẏ(t)

]
=

[
y(t)
u(t)

]
=

[
0 1
0 0

] [
x(t)
y(t)

]
+ u(t)

[
0
1

]
where

x(t) = position of the car at time t
y(t) = ẋ(t) = speed at time t
u(t) = mẍ(t) (m = 1)

Control problem: Drive the rocket car subject to a constraint |u(t)| ≤
umax on the possible acceleration (for example, to reach a prescribed
position and velocity from a given initial position and velocity).



Example 3: Investment policy

Control system:
ẋ(t) = u(t)x(t)

where

x(t) = production rate of a commodity
(such as steel) at time t

u(t) = percentage to be re-invested into the
production process at time t

Control problem: Choose the function u, i.e., decide how much of
the production should be re-invested rather than sold to reach certain
business goals (for example, to generate a desired profit over a given
planning interval [0,T ]).



Example 4: Cancer Treatment (1)

Divide the cancer cells in an organ into three compartments according
to their cell-cycle phase:

I first growth phase/dormant phase (prior to DNA reduplication);
I phase of DNA reduplication;
I second growth phase leading up to mitosis (cell division).

Let Ni (t) be the number of cells in compartment i at time t and
let a, b, c > 0 be the transition rates between the different compart-
ments. Then

Ṅ1(t) = −a N1(t) + 2c N3(t)

Ṅ2(t) = a N1(t)− b N2(t)

Ṅ3(t) = b N2(t)− c N3(t)

if the cells are left to themselves.



Example 4: Cancer Treatment (2)
Assume that two types of medicine are used to fight the cancer:

I a killing agent which acts mainly on cells in the third compart-
ment, which are particularly vulnerable;

I a blocking agent which acts on cells in the second compartment
by blocking the enzyme which stimulates DNA reduplication.

Let u(t) and v(t) be the rates at which the killing agent and the
blocking agent are administered, respectively. Simplifying, we have

Ṅ1(t) = −a N1(t) + 2c N3(t)
(
1−u(t)

)
Ṅ2(t) = a N1(t)− b N2(t)

(
1− v(t)

)
Ṅ3(t) = b N2(t)

(
1−v(t)

)
− c N3(t)

Ṅ1

Ṅ2

Ṅ3

 =

−a 0 2c
a −b 0
0 b −c

+ u

0 0 −2c
0 0 0
0 0 0

+ v

0 0 0
0 b 0
0 −b 0

N1
N2
N3





Reachability sets and their geometry

Control system:

ẋ(t) = f
(
x(t), t, u(t)

)
x(t0) = x0

Reachability set at time T > 0:

RT := {xu(T ) | u is an admissible control on [0,T ]}

In words: RT is the set of all states which can be reached starting
from the initial state x0 using an admissible control over the time
interval [0,T ]. It helps to visualize the boundary ∂R(t) as a “wave
front” evolving in time.



Example: rocket car problem[
ẋ
ẏ

]
=

[
y
u

] [
x(0)
y(0)

]
=

[
0
0

]
|u(t)| ≤ 1



Reachability sets of linear control systems
Linear control system:

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, umin ≤ ui (t) ≤ umax

Explicit solution formula:

xu(t) = Φ(t, t0)x0 + Φ(t, t0)

∫ t

t0
Φ(τ, t0)−1B(τ)u(τ) dτ

I Convexity: The set of all admissible controls is convex, and
the mapping u 7→ xu(T ) is affine. Hence RT is convex (as an
affine image of a convex set).

I Compactness: If we equip L∞[0,T ] with the w?-topology, the
set of all admissible controls is compact (Banach-Alaoglu The-
orem), and the mapping u 7→ xu(T ) is continuous. Hence RT
is compact (as a continuous image of a compact set).

I Continuity: The mapping T 7→ RT is continuous with respect
to the Hausdorff metric. Hence the reachability set varies con-
tinuously with time.



Solving the rocket car problem (1)
Fix t > 0. The solution formula yields[

xu(t)
yu(t)

]
=

[
x0 + ty0 +

∫ t
0 (t − s)u(s) ds

y0 +
∫ t
0 u(s) ds

]
.

Thus the condition
(
xu(t), yu(t)

)
= (0, 0) reads[∫ t

0 (t − s)u(s) ds∫ t
0 u(s) ds

]
=

[
−x0 − ty0
−y0

]
.

Define Tu : L1[0, t]→ R by Tu(f ) :=
∫ t
0 f (τ)u(τ) dτ . Then Tu(t −

s) = −x0 − ty0 and Tu(1) = −y0, hence Tu(s) = x0 and therefore

Tu(as + b) = ax0 − by0 =: Λt(as + b) for all a, b ∈ R.

Thus the condition that u steers the system to the target state in
time t means that Tu coincides with Λt on the space Pt of all linear
polynomial functions on the interval [0, t].



Solving the rocket car problem (2)
Let Ct := ‖Λt‖op = ‖Tu |Pt ‖op so that

Ct = max{|Tu(as + b)| | ‖as + b‖1 ≤ 1}

= max{|ax0 − by0| |
∫ t

0
|as + b| ds = 1}.

It is easily checked that t 7→ Ct decreases and tends to 0 as t →∞.
(Interpretation: Ct is the minimal engine power required to make it
possible to reach the target state in time t.) Assume the maximum
is taken for a = a? and b = b?. Then

Ct = |a?x0 − b?y0| = |Λt(a?s + b?)|
≤ ‖Λt‖op · ‖a?s + b?‖1 = ‖Λt‖op = Ct .

By the Hahn-Banach theorem, there is a norm-preserving extension
of Λt from Pt to L1[0, t]. This extension is necessarily of the form
Tu for some u ∈ L∞[0, t]. Then ‖u‖∞ = ‖Tu‖op = ‖Λt‖op = Ct
which means that |Tu(a?s + b?)| = ‖Tu‖op‖a?s + b?‖1.



Solving the rocket car problem (3)

The condition |Tu(a?s + b?)| = ‖Tu‖op‖a?s + b?‖1 means that∣∣∣∣∫ t

0
(a?s + b?)u(s) ds

∣∣∣∣ = ‖u‖∞ ·
∫ t

0
|a?s + b?| ds.

and can only be satisfied if

u(s) = ±Ct · sign(a?s + b?).

Given a constraint ‖u‖∞ ≤ 1, the shortest possible time is T :=
min{t ≥ 0 | Ct ≤ 1}. Then there is a unique optimal control, and
this control can only take the values ±1 with at most one switch in
sign. This is a special case of the bang-bang principle.



Convexity (continued)
Definition. Let V be a real vector space and let X be an arbitrary
subset of V . A point p ∈ X is called an extremal point of X if p
is not an inner point of a line segment with endpoints in X . Thus if
p = (1− t)x1 + tx2 with xi ∈ X implies x1 = x2 = p.

Note that the definition of an extreme point does not involve any
topological concept. However, often topological methods have to be
used to establish the existence of extreme points.

Krein-Milman Theorem (1940) Let V be a topological vector
space on which V ? separates points. Let K be a compact and
convex subset of V , and let E be the set of extreme points of K .
Then K = conv(E ).

Even the finite-dimensional version of this theorem is not entirely
trivial. It can be proved by induction on the dimension of V (see
Karlheinz Spindler, Höhere Mathematik, p. 330).
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Krein (1907-1989)

David Pinhusovich
Milman (1912-1982)



Convexity of the range of a vector measure

Let A be a σ-algebra on a set X . A measure µ : A → R is called
atomless if for any A ∈ A with µ(A) > 0 there is a subset A0 ⊆ A
with 0 < µ(A0) < µ(A).

Lyapunov’s Convexity Theorem (1940) Let µ1, . . . , µn be fi-
nite atomless measures on (X ,A) and let µ = (µ1, . . . , µn). Then
{µ(A) | A ∈ A} is a convex subset of Rn.

The original proof of Lyapunov’s theorem was both long and com-
plicated. A dazzling short proof was given by Lindenstrauss in 1966
which relied heavily on functional analytic methods (Radon-Nikodym,
Banach-Alaoglu, Krein-Milman). In the meantime, elementary proofs
were found.



Aleksej Andreevich
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Bang-bang principle

The following is a consequence of Lyapunov’s theorem and the Krein-
Milman theorem.

Theorem. Let yi : [a, b] → R be L1-functions and let y :=
(y1, . . . , yn). Then

{
∫ b

a
y(t)u(t) dt | |ui (t)| ≤ 1 for all t}

= {
∫ b

a
y(t)u(t) dt | |ui (t)| = 1 for all t}.

This implies that if a time-optimal control for a linear system exists
at all then there is also a “bang-bang” optimal control. This was first
proved by LaSalle in 1959.



Joseph Pierre LaSalle (1916-1983) at RIAS


