International Summer School:

 An Introduction to Functional Analysis through ApplicationsFUNCTIONAL ANALYSIS AND CONTROL THEORY
Wiesbaden, September 23-29, 2016
Karlheinz Spindler
Hochschule RheinMain
Kurt-Schumacher-Ring 18
D - 65197 Wiesbaden, Germany
Karlheinz.Spindler@hs-rm.de

Dual spaces of the classical Banach spaces (1)

Given a normed space V, we denote by V^{\star} its dual space. Recall that V^{\star} is the space of all continuous linear mappings $f: V \rightarrow \mathbb{K}$. Let us look at some examples!

- We have $\left(\mathbb{K}^{n}\right)^{\star}=\mathbb{K}^{n}$ in the sense that each (continuous) linear mapping $\mathbb{K}^{n} \rightarrow \mathbb{K}$ is of the form $x \mapsto a_{1} x_{1}+\cdots+a_{n} x_{n}$ with $a \in \mathbb{K}^{n}$.
- If V is a Hilbert space then $V^{\star}=V$ in the sense that each continuous linear mapping $V \rightarrow \mathbb{K}$ is of the form $x \mapsto\langle x, v\rangle$ with a fixed vector $v \in V$.
- As a special cases, each continuous linear mapping $f: \ell^{2} \rightarrow \mathbb{K}$ is of the form $x \mapsto a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots$ with $a \in \ell^{2}$.
Let $p \geq 1$. Let $q:=p /(p-1)$ so that $(1 / p)+(1 / q)=1$. (If $p=1$ then $q=\infty$.) Then $\left(\ell^{p}\right)^{\star}=\ell^{q}$ in the sense that each continuous linear mapping $\ell^{p} \rightarrow \mathbb{K}$ is of the form $x \mapsto$ $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots$ with $a \in \ell^{q}$.

Dual spaces of the classical Banach spaces (2)

- To determine $\left(\ell^{\infty}\right)^{\star}$ is more complicated and requires some measure theory.
- Let $p \geq 1$. Let $q:=p /(p-1)$ so that $(1 / p)+(1 / q)=1$. (If $p=1$ then $q=\infty$.) Then $\left(L^{p}(I)\right)^{\star}=L^{q}(I)$ in the sense that each continuous linear mapping $L^{p}(I) \rightarrow \mathbb{K}$ is of the form $f \mapsto \int_{I} f(x) g(x) \mathrm{d} x$ with $g \in L^{q}(I)$.
- The dual of $C(I)$ is the space of all regular Borel measures on I in the sense that each continuous linear functional $C(I) \rightarrow \mathbb{K}$ is of the form $f \mapsto \int_{1} f \mathrm{~d} \mu$ for such a measure μ.

Exercise. Let c_{0} be the space of all sequences in \mathbb{K} which converge to zero. Show that c_{0} is a closed subspace of ℓ^{∞} (and hence a Banach space) and show that $\left(c_{0}\right)^{\prime}=\ell^{1}$ in the sense that each continuous linear mapping $c_{0} \rightarrow \mathbb{K}$ is of the form $x \mapsto a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots$ with $a \in \ell^{1}$.

Extensions of linear functionals

Let V be a normed space and let U be a subspace of V. For each element $F \in V^{\star}$, the restriction $f=\left.F\right|_{U}$ is an element of U^{\star} with

$$
\begin{aligned}
& \|f\|=\sup \{F(u) \mid u \in U,\|u\| \leq 1\} \\
\leq & \sup \{F(v) \mid v \in V,\|v\| \leq 1\}=\|F\| .
\end{aligned}
$$

Conversely, we can ask whether or not a given element $f \in U^{\star}$ can be extended to an element $F \in V^{\star}$. That this is so is the contents of the famous Hahn-Banach theorem.

Hahn-Banach Extension Theorem. Given a normed space V, a subspace U and a continuous linear functional $f: U \rightarrow \mathbb{K}$, there is a continuous linear functional $F: V \rightarrow \mathbb{K}$ such that $\left.F\right|_{U}=f$ and $\|F\|=\|f\|$.

This theorem was originally proved (in 1927) only for $\mathbb{K}=\mathbb{R}$. There are many generalizations, variations and refinements of this theorem.

Weak topologies

The unit sphere $\{x \in V \mid\|x\| \leq 1\}$ of a normed space V is bounded and closed. If V is finite-dimensional this is equivalent to compactness. If V is infinite-dimensional, this is no longer true. On the other hand, compactness is a very desirable property; so one may try to weaken the topology to make the unit sphere compact. The weak topology on V is defined by letting $v_{i} \rightarrow v$ if and only if $f\left(v_{i}\right) \rightarrow f(v)$ for all $f \in V^{\star}$. On the dual space V^{\star} an even weaker topology can be defined, the so-called weak ${ }^{\star}$ topology. In this topology we have $f_{i} \rightarrow f$ if and only if $f_{i}(v) \rightarrow f(v)$ for all $v \in V$ (pointwise convergence).

Banach-Alaoglu Theorem (1940) Let V be a Banach space. Then the unit sphere in V^{\star} is weak ${ }^{\star}$-compact.

Convexity

A subset C of a real vector space V is called convex if it contains, with any two points p and q, also the line segment

$$
\{(1-t) p+t q \mid 0 \leq t \leq 1\} .
$$

Intuitively, this means that C has no holes or indentations.

- The intersection of any family of convex sets is convex again.
- Any affine image of a convex set is convex again.
- If V is a topological vector space and if $C \subseteq V$ is convex, then the closure \bar{C} is convex again.

Definition. Let X be an arbitrary subset of a real vector space V. The convex hull of X, denoted by $\operatorname{conv}(X)$, is the unique smallest convex set containing X (namely, the intersection of all convex sets containing X).

Control systems

Controlled dynamical system: $\dot{x}(t)=f(x(t), t, u(t))$
$\triangleright x(t)=$ system state at time t

- $u(t)=$ value of the external control variable at time t
- $f=$ function which describes the time evolution of the system
- If f does not explicitly depend on time, the system is called autonomous.
- Once the function $t \mapsto u(t)$ is chosen, we simply have a nonautonomous system

$$
\dot{x}(t)=F(x(t), t) \quad \text { where } \quad F(x, t):=f(x, t, u(t)) .
$$

However, choosing the control u appropriately is the central task in control theory.

Example 1: Use of an insecticide

Control system:

$$
\dot{x}(t)=k \cdot x(t)-u(t)
$$

where
$x(t)=$ size of an insect population at time t
$u(t)=$ application rate of an insecticide
$k=$ natural growth rate of the insect population (assumed as known)

Control problem: Choose the function u to "influence" or "control" the insect population in a desired way (for example, to extinguish the population before the apple bloom starts).

Example 2: Rocket car

Control system:

$$
\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=\left[\begin{array}{l}
y(t) \\
u(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+u(t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

where

$$
\begin{aligned}
x(t) & =\text { position of the car at time } t \\
y(t) & =\dot{x}(t)=\text { speed at time } t \\
u(t) & =m \ddot{x}(t) \quad(m=1)
\end{aligned}
$$

Control problem: Drive the rocket car subject to a constraint $|u(t)| \leq$ $u_{\text {max }}$ on the possible acceleration (for example, to reach a prescribed position and velocity from a given initial position and velocity).

Example 3: Investment policy

Control system:

$$
\dot{x}(t)=u(t) x(t)
$$

where

$$
\left.\begin{array}{rl}
x(t)= & \text { production rate of a commodity } \\
& \text { (such as steel) at time } t
\end{array}\right\}
$$

Control problem: Choose the function u, i.e., decide how much of the production should be re-invested rather than sold to reach certain business goals (for example, to generate a desired profit over a given planning interval $[0, T]$).

Example 4: Cancer Treatment (1)

Divide the cancer cells in an organ into three compartments according to their cell-cycle phase:

- first growth phase/dormant phase (prior to DNA reduplication);
- phase of DNA reduplication;
- second growth phase leading up to mitosis (cell division).

Let $N_{i}(t)$ be the number of cells in compartment i at time t and let $a, b, c>0$ be the transition rates between the different compartments. Then

$$
\begin{aligned}
& \dot{N}_{1}(t)=-a N_{1}(t)+2 c N_{3}(t) \\
& \dot{N}_{2}(t)=a N_{1}(t)-b N_{2}(t) \\
& \dot{N}_{3}(t)=b N_{2}(t)-c N_{3}(t)
\end{aligned}
$$

if the cells are left to themselves.

Example 4: Cancer Treatment (2)

Assume that two types of medicine are used to fight the cancer:

- a killing agent which acts mainly on cells in the third compartment, which are particularly vulnerable;
- a blocking agent which acts on cells in the second compartment by blocking the enzyme which stimulates DNA reduplication.
Let $u(t)$ and $v(t)$ be the rates at which the killing agent and the blocking agent are administered, respectively. Simplifying, we have

$$
\begin{gathered}
\dot{N}_{1}(t)=-a N_{1}(t)+2 c N_{3}(t)(1-u(t)) \\
\dot{N}_{2}(t)=a N_{1}(t)-b N_{2}(t)(1-v(t)) \\
\dot{N}_{3}(t)=b N_{2}(t)(1-v(t))-c N_{3}(t) \\
{\left[\begin{array}{c}
\dot{N}_{1} \\
\dot{N}_{2} \\
\dot{N}_{3}
\end{array}\right]=\left(\left[\begin{array}{rrr}
-a & 0 & 2 c \\
a & -b & 0 \\
0 & b & -c
\end{array}\right]+u\left[\begin{array}{rrr}
0 & 0 & -2 c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+v\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & b & 0 \\
0 & -b & 0
\end{array}\right]\right)\left[\begin{array}{l}
N_{1} \\
N_{2} \\
N_{3}
\end{array}\right]}
\end{gathered}
$$

Reachability sets and their geometry

Control system:

$$
\dot{x}(t)=f(x(t), t, u(t)) \quad x\left(t_{0}\right)=x_{0}
$$

Reachability set at time $T>0$:

$$
R_{T}:=\left\{x_{u}(T) \mid u \text { is an admissible control on }[0, T]\right\}
$$

In words: R_{T} is the set of all states which can be reached starting from the initial state x_{0} using an admissible control over the time interval $[0, T]$. It helps to visualize the boundary $\partial R(t)$ as a "wave front" evolving in time.

Example: rocket car problem

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{l}
y \\
u
\end{array}\right] \quad\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad|u(t)| \leq 1
$$

Reachability sets of linear control systems

Linear control system:

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=x_{0}, \quad u_{\min } \leq u_{i}(t) \leq u_{\max }
$$

Explicit solution formula:

$$
x_{u}(t)=\Phi\left(t, t_{0}\right) x_{0}+\Phi\left(t, t_{0}\right) \int_{t_{0}}^{t} \Phi\left(\tau, t_{0}\right)^{-1} B(\tau) u(\tau) \mathrm{d} \tau
$$

- Convexity: The set of all admissible controls is convex, and the mapping $u \mapsto x_{u}(T)$ is affine. Hence R_{T} is convex (as an affine image of a convex set).
- Compactness: If we equip $L^{\infty}[0, T]$ with the w^{\star}-topology, the set of all admissible controls is compact (Banach-Alaoglu Theorem), and the mapping $u \mapsto x_{u}(T)$ is continuous. Hence R_{T} is compact (as a continuous image of a compact set).
- Continuity: The mapping $T \mapsto R_{T}$ is continuous with respect to the Hausdorff metric. Hence the reachability set varies continuously with time.

Solving the rocket car problem (1)

Fix $t>0$. The solution formula yields

$$
\left[\begin{array}{l}
x_{u}(t) \\
y_{u}(t)
\end{array}\right]=\left[\begin{array}{c}
x_{0}+t y_{0}+\int_{0}^{t}(t-s) u(s) \mathrm{d} s \\
y_{0}+\int_{0}^{t} u(s) \mathrm{d} s
\end{array}\right] .
$$

Thus the condition $\left(x_{u}(t), y_{u}(t)\right)=(0,0)$ reads

$$
\left[\begin{array}{c}
\int_{0}^{t}(t-s) u(s) \mathrm{d} s \\
\int_{0}^{t} u(s) \mathrm{d} s
\end{array}\right]=\left[\begin{array}{c}
-x_{0}-t y_{0} \\
-y_{0}
\end{array}\right]
$$

Define $T_{u}: L^{1}[0, t] \rightarrow \mathbb{R}$ by $T_{u}(f):=\int_{0}^{t} f(\tau) u(\tau) \mathrm{d} \tau$. Then $T_{u}(t-$ $s)=-x_{0}-t y_{0}$ and $T_{u}(1)=-y_{0}$, hence $T_{u}(s)=x_{0}$ and therefore

$$
T_{u}(a s+b)=a x_{0}-b y_{0}=: \Lambda_{t}(a s+b) \quad \text { for all } a, b \in \mathbb{R}
$$

Thus the condition that u steers the system to the target state in time t means that T_{u} coincides with Λ_{t} on the space P_{t} of all linear polynomial functions on the interval $[0, t]$.

Solving the rocket car problem (2)

Let $C_{t}:=\left\|\Lambda_{t}\right\|_{o p}=\left\|\left.T_{u}\right|_{P_{t}}\right\|_{\mathrm{op}}$ so that

$$
\begin{aligned}
C_{t} & =\max \left\{\left|T_{u}(a s+b)\right| \mid\|a s+b\|_{1} \leq 1\right\} \\
& =\max \left\{\left|a x_{0}-b y_{0}\right|\left|\int_{0}^{t}\right| a s+b \mid \mathrm{d} s=1\right\} .
\end{aligned}
$$

It is easily checked that $t \mapsto C_{t}$ decreases and tends to 0 as $t \rightarrow \infty$. (Interpretation: C_{t} is the minimal engine power required to make it possible to reach the target state in time t.) Assume the maximum is taken for $a=a^{\star}$ and $b=b^{\star}$. Then

$$
\begin{aligned}
& C_{t}=\left|a^{\star} x_{0}-b^{\star} y_{0}\right|=\left|\Lambda_{t}\left(a^{\star} s+b^{\star}\right)\right| \\
& \leq\left\|\Lambda_{t}\right\|_{o p} \cdot\left\|a^{\star} s+b^{\star}\right\|_{1}=\left\|\Lambda_{t}\right\|_{o p}=C_{t} .
\end{aligned}
$$

By the Hahn-Banach theorem, there is a norm-preserving extension of Λ_{t} from P_{t} to $L^{1}[0, t]$. This extension is necessarily of the form T_{u} for some $u \in L^{\infty}[0, t]$. Then $\|u\|_{\infty}=\left\|T_{u}\right\|_{o p}=\left\|\Lambda_{t}\right\|_{o p}=C_{t}$ which means that $\left|T_{u}\left(a^{\star} s+b^{\star}\right)\right|=\left\|T_{u}\right\|_{o p}\left\|a^{\star} s+b^{\star}\right\|_{1}$.

Solving the rocket car problem (3)

The condition $\left|T_{u}\left(a^{\star} s+b^{\star}\right)\right|=\left\|T_{u}\right\|_{o p}\left\|a^{\star} s+b^{\star}\right\|_{1}$ means that

$$
\left|\int_{0}^{t}\left(a^{\star} s+b^{\star}\right) u(s) d s\right|=\|u\|_{\infty} \cdot \int_{0}^{t}\left|a^{\star} s+b^{\star}\right| d s .
$$

and can only be satisfied if

$$
u(s)= \pm C_{t} \cdot \operatorname{sign}\left(a^{\star} s+b^{\star}\right) .
$$

Given a constraint $\|u\|_{\infty} \leq 1$, the shortest possible time is $T:=$ $\min \left\{t \geq 0 \mid C_{t} \leq 1\right\}$. Then there is a unique optimal control, and this control can only take the values ± 1 with at most one switch in sign. This is a special case of the bang-bang principle.

Convexity (continued)

Definition. Let V be a real vector space and let X be an arbitrary subset of V. A point $p \in X$ is called an extremal point of X if p is not an inner point of a line segment with endpoints in X. Thus if $p=(1-t) x_{1}+t x_{2}$ with $x_{i} \in X$ implies $x_{1}=x_{2}=p$.

Note that the definition of an extreme point does not involve any topological concept. However, often topological methods have to be used to establish the existence of extreme points.

Krein-Milman Theorem (1940) Let V be a topological vector space on which V^{\star} separates points. Let K be a compact and convex subset of V, and let E be the set of extreme points of K. Then $K=\overline{\operatorname{conv}(E)}$.

Even the finite-dimensional version of this theorem is not entirely trivial. It can be proved by induction on the dimension of V (see Karlheinz Spindler, Höhere Mathematik, p. 330).

Convexity of the range of a vector measure

Let \mathfrak{A} be a σ-algebra on a set X. A measure $\mu: \mathfrak{A} \rightarrow \mathbb{R}$ is called atomless if for any $A \in \mathfrak{A}$ with $\mu(A)>0$ there is a subset $A_{0} \subseteq A$ with $0<\mu\left(A_{0}\right)<\mu(A)$.

Lyapunov's Convexity Theorem (1940) Let μ_{1}, \ldots, μ_{n} be finite atomless measures on (X, \mathfrak{A}) and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$. Then $\{\mu(A) \mid A \in \mathfrak{A}\}$ is a convex subset of \mathbb{R}^{n}.

The original proof of Lyapunov's theorem was both long and complicated. A dazzling short proof was given by Lindenstrauss in 1966 which relied heavily on functional analytic methods (Radon-Nikodym, Banach-Alaoglu, Krein-Milman). In the meantime, elementary proofs were found.

Aleksej Andreevich Lyapunov (1911-1973)

Joram Lindenstrauss (1936-2012)

Bang-bang principle

The following is a consequence of Lyapunov's theorem and the KreinMilman theorem.

Theorem. Let $y_{i}:[a, b] \rightarrow \mathbb{R}$ be L^{1}-functions and let $y:=$ $\left(y_{1}, \ldots, y_{n}\right)$. Then

$$
\begin{aligned}
& \left\{\int_{a}^{b} y(t) u(t) \mathrm{d} t| | u_{i}(t) \mid \leq 1 \text { for all } t\right\} \\
= & \left\{\int_{a}^{b} y(t) u(t) \mathrm{d} t| | u_{i}(t) \mid=1 \text { for all } t\right\} .
\end{aligned}
$$

This implies that if a time-optimal control for a linear system exists at all then there is also a "bang-bang" optimal control. This was first proved by LaSalle in 1959.

Joseph Pierre LaSalle (1916-1983) at RIAS

