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The Historical Development of Functional Analysis

I Calculus of variations
I Infinite systems of linear equations
I Integral equations
I Moment problem



The brachistochrone problem (Bernoulli 1696)

Given a point (x0, y0) with x0 > 0
and y0 > 0, which curve x 7→
y(x) satisfying y(0) = 0 and
y(x0) = y0 has the property that
a point mass, moving from rest
and without friction along the
curve solely under the influence
of gravity, carries out the motion
in the shortest possible time?



Mathematical formulation of the brachistochrone problem

I Motion: t 7→
(
x(t), y

(
x(t)

))
I Velocity: v(t) =

√
ẋ(t)2 + y ′

(
x(t)

)
ẋ(t)2 = ẋ(t)

√
1 + y ′(x)2

I Conservation of energy: (m/2)v(t)2 = mgy
(
x(t)

)
I Consequence: v(t) =

√
2gy
(
x(t)

)
I Differential equation:

√
2gy(x) = ẋ

√
1 + y ′(x)2

I Separation of variables:
∫ T

0
dt =

∫ x0

0

√
1 + y ′(x)2√
2gy(x)

dx

Hence the brachistochrone problem can be formulated as follows:
Find the function y(x) satisfying y(0) = 0 and y(x0) = y0 which
minimizes ∫ x0

0

√
1 + y ′(x)2

y(x)
dx .



Surfaces of revolution with minimal area (Euler 1744)

Consider two given points (a, ya)
and (b, yb) in the first quadrant.
For each function y : [a, b] →
(0,∞) satisfying y(a) = ya and
y(b) = yb we can consider the
surface obtained by rotating the
curve y = f (x) about the x-axis.
For which function y does the
surface area become minimal?



Surfaces of revolution with minimal area

Mathematical formulation. Minimize the integral∫ b

a
2πy(x)

√
1 + y ′(x)2 dx

over all functions y satisfying the boundary conditions y(a) = ya and
y(b) = yb.

Physical interpretation. Hold two wire rings of radii ya and yb a
distance b−a apart and dip them into a soap solution. Which shape
will the soap film have that will form?



Calculus of variations (1)

Generalizing the above problems, we can consider an arbitrary func-
tion L in three variables and ask which function y minimizes the
expression

I [y ] :=

∫ b

a
L
(
x , y(x), y ′(x)

)
dx

(subject to prescribed boundary conditions). We are used to solving
optimization problems in one variable or in several variables, but here
we want to minimize an expression I which is not a function of one or
several variables, but a function whose argument is itself a function!
Such a function is usually called a functional. (We may consider
I as a function of infinitely many variables, namely all the values
y(x) where a ≤ x ≤ b.) Thus we are led to considering mappings
I : V → R where V is a space of functions. Formulated in this
way, we are already close to basic ideas of functional analysis, but
historically, the development went differently.



Calculus of variations (2)

Naively, one simply sought smooth solutions. However, already Euler, in
his investigations of vibrations of a string, had to deal with nonsmooth
solutions and distinguished between “continuous” (i.e., analytic) and “me-
chanical” (i.e., piecewise C 2) functions. Similarly, by solving problems in
the calculus of variations, one encountered nonsmooth solutions (Gold-
schmidt solutions for the problem of minimal surfaces of revolution, dis-
continuities in the derivatives as dealt with by the Weierstraß-Erdmann
corner conditions). Very slowly, the need was realized to clearly specify
the domain of the functional I (as a well-defined space of functions) and
to even reappraise the concept of “function”. This process eventually led
to concepts like weak solutions of partial differential equations and distri-
butions.
In the classical period, however, no such approach was taken. One simply
considered a single function y (of not clearly defined degree of smoothness)
and asked which conditions such a function y must satisfy to minimize I [y ].
Observe that if y0 minimizes the expression I [y ], then, given arbitrary func-
tions h : [a, b]→ R with h(a) = h(b) = 0, the function ϕ(ε) := I [y0 + εh]
takes a minimum at ε = 0. Thus we must have ϕ′(0) = 0 and ϕ′′(0) ≥ 0.



The Euler-Lagrange equation
Assume y minimizes

∫ b
a L(x , y , y ′)dx . Letting • =

(
x , y(x), y ′(x)

)
,

we have

0 =
d
dε

∣∣∣∣
ε=0

∫ b

a
L(x , y + εh, y ′ + εh′

)
dx

=

∫ b

a

(
∂L
∂y

(•) · h(x) +
∂L
∂y ′

(•) · h′(x)

)
dx

=

∫ b

a

(
∂L
∂y

(•)− d
dx

[
∂L
∂y ′

(•)
])
· h(x) dx

where we used integration by parts in the last step, exploiting the
conditions h(a) = h(b) = 0. Since this must hold for all possible
choices for h, we conclude that

∂L
∂y

=
d
dx

[
∂L
∂y ′

]
along the trajectory x 7→

(
x , y(x), y ′(x)

)
.

This is called the Euler-Lagrange equation.



The Legrendre condition

Similarly, for all h with h(a) = h(b) = 0, we must have

0 ≤ d2

dε2

∣∣∣∣∣
ε=0

∫ b

a
L(x , y + εh, y ′ + εh′

)
dx

=

∫ b

a

(
Lyy (•)h(x)2 + 2Lyy ′(•)h(x)h′(x) + Ly ′y ′(•)h′(x)2) dx .

Again, this must hold for all possible choices for h, which can be
shown to imply the Legendre condition

Ly ′y ′
(
x , y(x), y ′(x)

)
≥ 0.



Calculus of variations and functional analysis

I Euler, Lagrange and Legendre derived only necessary optimality
conditions.

I Legendre ran into problems when he tried to derive sufficient
conditions for optimality.

I In various problems the existence of optimal solutions could not
be guaranteed a priori. (This applied in particular to the famous
“Dirichlet Principle” in potential theory.)

I When discussing local extrema, one has to specify what is meant
by a “nearby” function. This led to a distinction between “weak”
and “strong” extrema.

I It became clear that one had to specify the exact range of func-
tions over which an optimization is performed.

I This was not done in the classical period. The idea to study
a totality of functions as a single entity could only occur when
the necessary set-theoretical concepts were available (Cantor).



Leonhard Euler
(1707-1783)

Joseph-Louis Lagrange
(1736-1813)



Louis Legendre
(1752-1797) Adrien-Marie Legendre

(1752-1833)



What did Legendre look like? An inverse problem



Fourier’s Problem (1822)

Jean Baptiste Joseph
Fourier (1768-1830)

Find a solution of the partial dif-
ferential equation

uxx + uyy = 0

on (0,∞)× (−π/2, π/2) satisfy-
ing the following boundary condi-
tions:

I u(0, y) = 1 for all y ;

I u(x , y) → 0 for x → ∞ for
all y ;

I u(x ,−π/2) = u(x , π/2) =
0 for all x .



Fourier’s solution (1)
To solve the equation uxx + uyy = 0, try u(x , y) = f (x)g(y). This
yields f ′′(x)g(y) + f (x)g ′′(y) = 0 for all x , y , hence

f ′′(x)

f (x)
= −g ′′(y)

g(y)
= const.

Those solutions which also satisfy the homogenous boundary condi-
tions are the functions

um(x , y) = e−(2m−1)x cos
(
(2m − 1)y

)
where m ∈ N.

Now linear combinations of those solutions are again solutions; hence
try u(x , y) =

∑∞
m=1 ame−(2m−1)x cos

(
(2m − 1)y

)
and adjust the

coefficients am in such a way that the inhomogeneous boundary con-
dition u(0, y) = 1 is satisfied. This leads to the requirement that

1 =
∞∑

m=1

am cos
(
(2m − 1)y

)
for all y ∈

(
−π/2, π/2

)
.



Fourier’s solution (2)

Differentiate the equation 1 =
∑∞

m=1 am cos
(
(2m − 1)y

)
infinitely

often and plug in y = 0 each time. This results in the equations

1 =
∞∑

m=1

am, 0 =
∞∑

m=1

(2m − 1)2am, 0 =
∞∑

m=1

(2m − 1)4am, . . .

which can be formulated as a system of an infinite number of linear
equations in infinitely many unknowns a1, a2, a3, . . ., namely

1 1 1 1 · · ·
12 32 52 72 · · ·
14 34 54 74 · · ·
16 36 56 76 · · ·
...

...
...

...




a1
a2
a3
a4
...

 =


1
0
0
0
...

 .



Fourier’s solution (3)
For each k , consider the finite system obtained by cutting off all
entries after the k-th row or column. For example, for k = 4 this
gives the system

1 1 1 1
12 32 52 72

14 34 54 74

16 36 56 76




a1
a2
a3
a4

 =


1
0
0
0

 .
Verify that each of these reduced systems has a unique solution
(a(k)1 , a(k)2 , . . . , a(k)k ). Verify that

am = lim
k→∞

a(k)m =
(−1)m−1 · (π/4)

2m − 1

exists and has the specified value. This yields the solution

u(x , y) =
π

4

∞∑
m=1

(−1)m−1

2m − 1
e−(2m−1)x cos

(
(2m − 1)y

)
.



Hill’s Problem (1886)

George William Hill
(1838-1914)

As part of his theory of the
moon’s motion, Hill tried to de-
scribe the motion of the lunar
perigee as a function of the mean
motions of the sun and the moon.
In doing so, he came up with a
differential equation

ü(t) + θ(t)u(t) = 0

where θ(t) =
∑∞

n=−∞ θne
int

with given coefficients θn satisfy-
ing θ−n = θn for all n.



Hill’s solution (1)
To solve the equation ü + θu = 0, Hill tried the ansatz u(t) =∑∞

n=−∞ λne i(n+c)t with a constant c and coefficients λn to be deter-
mined. Plugging into the original differential equation and comparing
coefficients results in the equations

−λn(n + c)2 +
∞∑

k=−∞
θn−kλk = 0

which constitute a doubly infinite system of linear equations. The
coefficient matrix is

...
...

...
...

...
...

· · · θ1 θ0 − c2 θ−1 θ−2 θ−3 θ−4 · · ·
· · · θ2 θ1 θ0 − (c+1)2 θ−1 θ−2 θ−3 · · ·
· · · θ3 θ2 θ1 θ0 − (c+2)2 θ−1 θ−2 · · ·

...
...

...
...

...
...





Abel’s Problem (1823)

Niels Henrik Abel (1802-1829)

A particle slides along a curve
y = f (x) under the influence of
gravity. Determine the shape of
the curve for which the time of
descent from

(
x , f (x)

)
takes a

prescribed value T (x).



Mathematical formulation of Abel’s problem

Let
(
ξ(t), η(t)

)
=
(
ξ(t), f

(
ξ(t)

)
the particle’s position at time t.

By conservation of energy, we have

mgx = mgξ +
m
2

(ξ̇2 + η̇2) = mgξ +
m
2
ξ̇2
(
1 + f ′(ξ)2).

Letting g(x) :=
∫ x
0

√
1 + f ′(ξ)2 dξ, this becomes√

2g(x − ξ) = −ξ̇
√

1 + f ′(ξ)2 = −ξ̇ g ′(ξ)

and hence√
2g T (x) =

∫ T (x)

0

√
2g dt = −

∫ 0

x

g ′(ξ)√
x − ξ

dξ =

∫ x

0

g ′(ξ)√
x − ξ

dξ.

Given T , find g .



Abel’s solution (1)
Abel immediately considered the more general problem of solving the
following equation for u in terms of f (where 0 < α < 1 is fixed and
where f (a) = 0):

f (x) =

∫ x

a

u(ξ)

(x − ξ)α
dξ.

Start with the well-known formula

π

sin(απ)
=

∫ z

ξ

dx
(z − x)1−α(x − ξ)α

.

Multiply by u(ξ) and integrate from a to z to get

π

sin(απ)

∫ z

a
u(ξ) dξ =

∫ z

a

∫ z

ξ

u(ξ)

(z − x)1−α(x − ξ)α
dx dξ

=

∫ z

a

∫ x

a

u(ξ)

(z − x)1−α(x − ξ)α
dξ dx .



Abel’s solution (2)
On the other hand, multiply the equation

f (x) =

∫ x

a

u(ξ)

(x − ξ)α
dξ.

by (z − x)α−1 and integrate from a to z to get∫ z

a

f (x)

(z − x)1−α dx =

∫ z

a

∫ x

a

u(ξ)

(z − x)1−α(x − ξ)α
dξ dx .

A comparison with the previous formula yields∫ z

a

f (x)

(z − x)1−α dx =
π

sin(απ)

∫ z

a
u(ξ) dξ

and hence

u(z) =
sin(απ)

π
· d
dz

(∫ z

a

f (x)

(z − x)1−α dx
)
.



Sturm and Liouville

Jacques Charles François
Sturm (1803-1855)

Joseph Liouville (1809-1882)



Liouville 1837
The linear differential equation y ′′+ρ2y = ϕ has the general solution

y(x) = A sin
(
ρ(x−a)

)
+ B cos

(
ρ(x−a)

)
+

1
ρ

∫ x

a
sin
(
ρ(x−a)

)
ϕ(ξ) dξ.

Liouville applied this formula to the initial value problem

u′′(x) +
(
ρ2 − σ(x)

)
u(x) = 0, u(a) = 1, u′(a) = 0

to obtain

u(x) = cos
(
ρ(x−a)

)
+

1
ρ

∫ x

a
sin
(
ρ(x−ξ)

)
σ(ξ)u(ξ) dξ,

thereby replacing an initial value problem by an integral equation.
Liouville wanted to find a series expansion for u which converges
rapidly for large values of ρ. He had the fortuitious idea to plug in
the right-hand side of this equation into the expression u(ξ) under
the integral sign.



Integral equations

Liouville’s method works quite generally, not only in the example he
considered. Therefore, let us write down the general form of integral
equations we want to study.

I f (x) =
∫ x
a K (x , ξ)u(ξ) dξ (type studied by Abel)

I u(x) = f (x) +
∫ x
a K (x , ξ)u(ξ) dξ (type studied by Liouville)

Even more generally, we can consider the following types of integral
equations:

I f (x) =
∫ b
a K (x , ξ)u(ξ) dξ

I u(x) = f (x) +
∫ b
a K (x , ξ)u(ξ) dξ

These reduce to the types studied by Abel and Liouville if K (x , ξ) = 0
for x > ξ. Liouville’s method works for the last kind shown.



Liouville’s method

u(x) = f (x) +

∫ b

a
K (x , ξ)u(ξ) dξ

u(x) = f (x) +

∫ b

a
K (x , ξ)

[
f (ξ) +

∫ b

a
K (ξ, ξ̂)u(ξ̂) dξ̂

]
dξ

u(x) = f (x) +

∫ b

a
K (x , ξ)f (ξ) dξ +

∫ b

a

∫ b

a
K (x , ξ)K (ξ, ξ̂)u(ξ̂)dξ̂ dξ

Iterate the procedure of plugging in the full expression for u into the
expression fo u under the integral sign. This gives a series represen-
tation

u(x) = f (x) +
∞∑

k=1

∫ b

a
· · ·
∫ b

a
K (x , ξ1) · · ·K (ξk−1, ξk)f (ξk) dξk · · · dξ1

(“Volterra series”). If this series converges uniformly on some interval,
it respresents a solution of the integral equation.



Convergence of the Volterra series (1)

Consider first the case that K (x , ξ) = 0 for x > ξ so that u(x) =
f (x) +

∫ x
a K (x , ξ)u(ξ) dξ. The Volterra series is

f (x) +

∫ x

a
K (x , ξ1)f (ξ1) dξ1 +

∫ x

a

∫ ξ1

a
K (x , ξ1)K (ξ1, ξ2)f (ξ2) dξ2 dξ1

+

∫ x

a

∫ ξ1

a

∫ ξ2

a
K (x , ξ1)K (ξ1, ξ2)K (ξ2, ξ3)f (ξ3) dξ3 dξ2 dξ1 + · · · .

This series is majorized by

‖f ‖+ ‖K‖ ‖f ‖(x−a) + ‖K‖2‖f ‖(x−a)2

2!
+ ‖K‖3‖f ‖(x−a)3

3!
+ · · ·

which is ‖f ‖ exp
(
‖K‖(x − a)

)
. Hence the series is uniformly conver-

gent and thus represents a solution of the integral equation.



Convergence of the Volterra series (2)

The general case u(x) = f (x) +
∫ b
a K (x , ξ)u(ξ) dξ is similar. The

Volterra series is

f (x) +

∫ b

a
K (x , ξ1)f (ξ1) dξ1 +

∫ b

a

∫ b

a
K (x , ξ1)K (ξ1, ξ2)f (ξ2) dξ2 dξ1

+

∫ b

a

∫ b

a

∫ b

a
K (x , ξ1)K (ξ1, ξ2)K (ξ2, ξ3)f (ξ3) dξ3 dξ2 dξ1 + · · · .

This series is majorized by

‖f ‖+ ‖K‖ ‖f ‖(b−a) + ‖K‖2‖f ‖(b−a)2 + ‖K‖3‖f ‖(b−a)3 + · · ·

which converges if ‖K‖(b − a) < 1 (geometric series). With hind-
sight, we recognize glimpses of the the contraction property, the
Banach fixed point theorem and the Neumann series.



Vito Volterra (1860-1940)



Volterra’s 1896 solution (1)
Again, consider u(x) = f (x) +

∫ b
a K (x , ξ)u(ξ) dξ. Let K1 := K and

Ki+1(x , y) :=

∫ b

a
K (x , ξ)Ki−1(ξ, y) dξ.

Inductively, we see that

Ki (x , y) =

∫ b

a
· · ·
∫ b

a
K (x , ξ1) · · ·K (ξi−1, y) dξi−1 · · · dξ1.

The kernels (Ki ) satisfy the semigroup property

Ki+j(x , y) =

∫ b

a
Ki (x , ξ)Kj(ξ, y) dξ.

Note that if K (x , ξ) vanishes for x > ξ then so does Ki for any
i , which entails that Ki+j(x , y) =

∫ x
y Ki (x , ξ)Kj(ξ, y) dξ. Only this

case was considered by Volterra.



Volterra’s 1896 solution (2)
Assume that K ? := −

∑∞
i=1 Ki exists. Then the remainder Rn :=∑∞

i=n+1 Ki satisfies

(?) Rn(x , y) =
∞∑

i=n+1

∫ b

a
Ki−j(x , ξ)Kj(ξ, y) dξ

(
j = j(i)

)
Since −K ? =

∑∞
i=n+1 Ki−n, we have

−K ?(x , ξ) =
∞∑

i=n+1

Ki−n(x , ξ).

Multiply by Kn(ξ, y) and integrate over a ≤ ξ ≤ b to obtain

−
∫ b

a
K ?(x , ξ)Kn(ξ, y) dξ =

∞∑
i=n+1

∫ b

a
Ki−n(x , ξ)Kn(ξ, y) dξ = Rn(x , y)

using j(i) = n for all i in (?).



Volterra’s 1896 solution (3)

Recall

(?) Rn(x , y) =
∞∑

i=n+1

∫ b

a
Ki−j(x , ξ)Kj(ξ, y) dξ

(
j = j(i)

)
Since −K ? =

∑∞
i=n+1 Ki−n, we have

−K ?(ξ, y) =
∞∑

i=n+1

Ki−n(ξ, y).

Multiply by Kn(x , ξ) and integrate over a ≤ ξ ≤ b to obtain

−
∫ b

a
Kn(x , ξ)K ?(ξ, y) dξ =

∞∑
i=n+1

∫ b

a
Kn(x , ξ)Ki−n(ξ, y) dξ = Rn(x , y)

using j(i) = i − n for all i in (?).



Volterra’s 1896 solution (4)

Equating the two formulas, we have

−Rn(x , y) =

∫ b

a
Kn(x , ξ)K ?(ξ, y) dξ =

∫ b

a
K ?(x , ξ)Kn(ξ, y) dξ.

For n = 1 we have K1 = K and R1 = −K ? − K . Hence

K (x , y) + K ?(x , y) =

∫ b

a
K (x , ξ)K ?(ξ, y) dξ

=

∫ b

a
K ?(x , ξ)K (ξ, y) dξ.

We call K ? reciprocal to K if this relation holds. Note that then also
K is reciprocal to K ?.



Volterra’s 1896 solution (5)
The integral equation to be solved is u(x) = f (x) +∫ b
a K (x , ξ)u(ξ) dξ, i.e,

u(ξ) = f (ξ) +

∫ b

a
K (ξ, ξ1)u(ξ1) dξ1.

Assume K ? is reciprocal to K . Multiply by K ?(x , ξ) and integrate
over a ≤ ξ ≤ b to see that

∫ b
a K ?(x , ξ)u(ξ) dξ equals∫ b

a
K ?(x , ξ)f (ξ) dξ +

∫ b

a

∫ b

a
K ?(x , ξ)K (ξ, ξ1)u(ξ1) dξ1 dξ

=

∫ b

a
K ?(x , ξ)f (ξ) dξ +

∫ b

a

∫ b

a
K ?(x , ξ)K (ξ, ξ1)u(ξ1) dξ dξ1

=

∫ b

a
K ?(x , ξ)f (ξ) dξ +

∫ b

a

(
K ?(x , ξ1) + K (x , ξ1)

)
u(ξ1) dξ1

=

∫ b

a
K ?(x , ξ)f (ξ) dξ +

∫ b

a
K ?(x , ξ)u(ξ) dξ +

∫ b

a
K (x , ξ)u(ξ) dξ.



Volterra’s 1896 solution (6)

Subtracting
∫ b
a K ?(x , ξ)u(ξ) dξ yields

0 =

∫ b

a
K ?(x , ξ)f (ξ) dξ +

∫ b

a
K (x , ξ)u(ξ) dξ.

Hence

u(x) = f (x) +

∫ b

a
K (x , ξ)u(ξ) dξ

if and only if

u(x) = f (x)−
∫ b

a
K ?(x , ξ)f (ξ) dξ.



The contributions of Fredholm and Hilbert

Ivar Fredholm (1866-1927) David Hilbert (1862-1943)



Discretization (1)
We want to solve the integral equation

u(x) = f (x) +

∫ b

a
K (x , ξ)u(ξ) dξ.

Subdivide the interval [a, b] as a = x0 < x1 < x2 < · · · < xn = b
where xk−xk−1 = (b−a)/n =: δ. Replace the integral by a Riemann
sum to get

un(x) = f (x) +
n∑

i=1

K (x , xj)un(xj) δ.

Let kij := δK (xi , xj) and evaluate at the points x = xi to get
1− k11 −k12 · · · −k1n
−k21 1− k22 · · · −k2n
...

...
. . .

...
−kn1 −kn2 · · · 1− knn




un(x1)
un(x2)

...
un(xn)

 =


f (x1)
f (x2)
...

f (xn)





Discretization (2)

Solve this system by using Cramer’s Rule:

un(xi ) =
f (x1)Dn(xi , x1) + f (x2)Dn(xi , x2) + · · ·+ f (xn)Dn(xi , xn)

∆n

where ∆n is the coefficient determinant and where Dn(xi , xj) is the
cofactor of this determinant with respect to the ij-entry. Expansion
shows that

∆n = 1−
n∑

i=1

δK (xi , xi ) +
1
2!

n∑
i ,j=1

δ2
∣∣∣∣K (xi , xi ) K (xi , xj)
K (xj , xi ) K (xj , xj)

∣∣∣∣
− 1
3!

n∑
i ,j ,k=1

δ3

∣∣∣∣∣∣
K (xi , xi ) K (xi , xj) K (xi , xk)
K (xj , xi ) K (xj , xj) K (xj , xk)
K (xk , xi ) K (xk , xj) K (xk , xk)

∣∣∣∣∣∣± · · · .



Discretization (3)

... and also

Dn(xi , xj)/δ = K (xi , xj)−
n∑

k=1

δ

∣∣∣∣K (xi , xj) K (xi , xk)
K (xk , xi ) K (xk , xk)

∣∣∣∣
+

1
2!

n∑
k,`=1

δ2

∣∣∣∣∣∣
K (xi , xj) K (xi , xk) K (xi , x`)
K (xk , xi ) K (xk , xk) K (xk , x`)
K (x`, xi ) K (x`, xj) K (x`, x`)

∣∣∣∣∣∣± · · · .
for i 6= j whereas Dn(xi , xi ) ≈ ∆n. We now let n → ∞ while
allowing i and j to vary in such a way that (xi , xj)→ (x , y).



Discretization (4)

Then

∆n = 1−
n∑

i=1

δK (xi , xi ) +
1
2!

n∑
i ,j=1

δ2
∣∣∣∣K (xi , xi ) K (xi , xj)
K (xj , xi ) K (xj , xj)

∣∣∣∣
− 1

3!

n∑
i ,j ,k=1

δ3

∣∣∣∣∣∣
K (xi , xi ) K (xi , xj) K (xi , xk)
K (xj , xi ) K (xj , xj) K (xj , xk)
K (xk , xi ) K (xk , xj) K (xk , xk)

∣∣∣∣∣∣± · · ·
→ 1−

∫ b

a
K (ξ1, ξ1) dξ1 +

1
2!

∫ b

a

∫ b

a

∣∣∣∣K (ξ1, ξ1) K (ξ1, ξ2)
K (ξ2, ξ1) K (ξ2, ξ2)

∣∣∣∣ dξ2 dξ1
− 1

3!

∫ b

a

∫ b

a

∫ b

a

∣∣∣∣∣∣
K (ξ1, ξ1) K (ξ1, ξ2) K (ξ1, ξ3)
K (ξ2, ξ1) K (ξ2, ξ2) K (ξ2, ξ3)
K (ξ3, ξ1) K (ξ3, ξ2) K (ξ3, ξ3)

∣∣∣∣∣∣ dξ3 dξ2 dξ1 ± · · ·



Discretization (5)

... and

Dn(xi , xj)/δ = K (xi , xj)−
n∑

k=1

δ

∣∣∣∣K (xi , xj) K (xi , xk)
K (xk , xi ) K (xk , xk)

∣∣∣∣
+

1
2!

n∑
k,`=1

δ2

∣∣∣∣∣∣
K (xi , xj) K (xi , xk) K (xi , x`)
K (xk , xi ) K (xk , xk) K (xk , x`)
K (x`, xi ) K (x`, xj) K (x`, x`)

∣∣∣∣∣∣± · · ·
→ K (x , y)−

∫ b

a

∣∣∣∣K (x , y) K (x , ξ1)
K (ξ1, y) K (ξ1, ξ1)

∣∣∣∣ dξ1
+

1
2!

∫ b

a

∫ b

a

∣∣∣∣∣∣
K (x , y) K (x , ξ1) K (x , ξ2)
K (ξ1, y) K (ξ1, ξ1) K (ξ1, ξ2)
K (ξ2, y) K (ξ2, ξ1) K (ξ2, ξ2)

∣∣∣∣∣∣ dξ2 dξ1 ∓ · · ·
=: D(x , y) for i 6= j .



Discretization (6)

On the other hand, Dn(xi , xi ) → ∆ as n → ∞. Let n → ∞ in the
equation

un(xi ) =
f (x1)Dn(xi , x1) + f (x2)Dn(xi , x2) + · · ·+ f (xn)Dn(xi , xn)

∆n

to obtain

u(x) = f (x) +
1
∆

∫ b

a
D(x , ξ)f (ξ) dξ.

This was the solution Fredholm found for the integral equation
u(x) = f (x) +

∫ b
a K (x , ξ)u(ξ) dξ. Fredholm used the above argu-

ments only heuristically to find his solution und justified the solution
differently. It was Hilbert who showed that all steps in the derivation
can be made rigorous.



The moment problem

Chebysheff 1855: Is the normal distribution characterized by its mo-
ments? More concretely, can we conclude from∫ ∞

−∞
f (x)xndx =

∫ ∞
−∞

e−x2
xndx for all n ∈ N0

that f (x) = e−x2
?

Stieltjes 1894: Given a sequence (cn) of real numbers, is there an
increasing function g such that

∫ b
a xndg(x) = cn for all n ∈ N?

Riesz 1910: Let (1/p) + (1/q) = 1. Given functions fk ∈ Lq and
real numbers ck , is there a function g ∈ Lp such that

∫ b
a fkg = ck

for all k ∈ N?



The moment problem and linear functionals (1)
With hindsight, the moment problem can be seen as a problem of
the following kind: Given a Banach space X , a sequence (xn) in
X and a sequence (cn) in K, is there a continuous linear functional
f : X → K such that f (xn) = cn for all n? Similarly, given an infinite
system of linear equations

∞∑
k=1

aikxk = bi ,

we may consider the “row vectors” ai = (ai1, ai2, ai3, . . .) as elements
of a Banach space X and identify f := (x1, x2, x3, . . .) with an el-
ement of X ?. Solving the system then amounts to finding f ∈ X ?

such that f (ai ) = bi for all i . Then for all λ1, . . . , λn ∈ K we have∣∣∣∣∣
n∑

i=1

λibi

∣∣∣∣∣ =

∣∣∣∣∣f
(

n∑
i=1

λiai

)∣∣∣∣∣ ≤ ‖f ‖op

∥∥∥∥∥
n∑

i=1

λiai

∥∥∥∥∥ .



The moment problem and linear functionals (2)

Hence a necessary condition for the solvability of the system is the
existence of a constant M ≥ 0 such that∣∣∣∣∣

n∑
i=1

λibi

∣∣∣∣∣ ≤ M ·

∥∥∥∥∥
n∑

i=1

λiai

∥∥∥∥∥
for all λ1, . . . , λn ∈ K. The fact that this condition is also sufficient
was established step by step:

I for `2 by Schmidt in 1908;
I for Lp[a, b] where 1 < p <∞ by Riesz in 1909;
I for C [a, b] by Riesz (1911) and Helly (1912);
I for `p where 1 < p <∞ by Riesz in 1913;
I for arbitrary sequence spaces by Helly in 1921;
I in the general case by Hahn (1927) and Banach (1929).



The moment problem and linear functionals (3)
The idea of the sufficiency proof was to choose fn ∈ X ? with minimal
norm ‖fn‖ ≤ M such that fn(ai ) = bi for 1 ≤ i ≤ n. In the
separable case, the sought functional f is obtained by taking the
limit of a weakly? convergent subsequence of (fn). However, already
Riesz (1909) realized how the nonseparable case could be handled:
“Unsere Resultate bleiben auch für Systeme bestehen, die mehr als
abzählbar viele Gleichungen enthalten.” To satisfy f (ai ) = bi for an
arbitrary index set I , there must be a constant M ≥ 0 such that

|
∑
i∈I0

λibi | ≤ M · ‖
∑
i∈I0

λiai‖

for all λi ∈ K over a finite index set I0. If X0 is the span of the
elements ai where i ∈ I0 we define f0(

∑
i∈I0 λiai ) :=

∑
i∈I0 λibi and

have f0 ∈ X ?
0 with ‖f0‖ ≤ M. Hence solving the moment problem

is equivalent to extending f0 in a norm-preserving way. This led
eventually to the Hahn-Banach extension theorem.



Duality

Given a normed space V (or, more generally, a topological vector
space V ), we denote by V ? the space of all continuous linear forms
on V . The idea to deduce information on x ∈ V from the values
f (x) where f ∈ V ? corresponds to treating the state x of a system
as a “black box” about which nothing is known except the values of
measurements performed on the system. This approach has analogies
to the treatment of observers in quantum mechanics (which is one of
the first fields to which functional analytic methods were applied) and
also to the theory of distributions (where a distribution is determined
by its effect on test functions).
Notations for the effect of a linear form on an element of a function
space:

I Hadamard 1903: U[f (x)]

I Riesz 1911: A[f (x)]

I Helly 1912: U[f ]



The genesis of functional analysis around 1900 (1)

I Problems were studied which could be tackled by a transition
from a finite-dimensional to an infinite-dimensional setting.

I In particular, spaces of sequences and spaces of functions were
studied (without initially calling them so). Sequences and func-
tions were treated as vectors with an infinite number of compo-
nents.

I It became necessary to consider families of objects (such as
functions) as entities in their own right. (A good example is the
equicontinuity of a family of functions.) It was of fundamental
importance that set-theoretical terminology and concepts had
been developed (Cantor).

I Typically, special problems were treated in an ad hoc manner,
but structural similarities between different kinds of problems
were soon discovered and stimulated an interest in “mathemat-
ical structures”.



The genesis of functional analysis around 1900 (2)
I It became apparent that problems could be made more acces-

sible by ignoring special features of the concrete problem under
consideration and inserting the problem into a more general con-
text.

I Since many problems were solved by approximation procedures,
the concept of convergence needed to be corroborated, and new
concepts such as weak convergence evolved. Eventually, this
needed the definition of topological concepts.

I There was a tendency to question basic concepts such as that
of a function (Euler, Goldschmidt, Cantor) or that of a num-
ber (Dedekind) and to revise mathematical foundations such
as logic (Frege, Russell), set theory (Cantor), or geometry
(Hilbert). This certainly helped to lay the foundations of topol-
ogy (Frechet, Hausdorff).

I The simultaneous development of Lebesgue’s theory of inte-
gration helped enormously the study of integral equations (for
example due to the completeness of Lp spaces).



Linear algebra and functional analysis
In our teaching, we can prepare functional analytic ideas from the
very first semester on, obviously in analysis courses, but also in lin-
ear algebra courses, by regularly incorporating examples involving
infinite-dimensional spaces (typically spaces of sequences and func-
tions). However, this does not reflect the historical development.

Jean Dieudonné: History of Functional Analysis:
Unfortunately, linear algebra, as it was understood in the XIXth cen-
tury (and even much later) did not readily lend itself to affording a
good guidance to such generalizations. Its own evolution had been
very slow and painful, stretching over 130 years, and in a succession
of stages which, to our eyes, is exactly the reverse of the logical
sequences of notions, namely

linear equations→ determinants→ linear and bilinear forms
→ matrices→ vector spaces and linear maps



Stefan Banach’s Thesis (1)

The thesis was submitted to the University of Lwów in June 1920
and published two years later. (Sur les opérations dans les ensembles
abstraits et leur application aux équations intégrales, Fundamenta
Mathematicae 3 (1922), pp. 133-181.)

Soit E une classe composée tout au moins de deux éléments,
d’ailleurs arbitraires, que nous désignerons p.e. par X ,Y ,Z , . . .
a, b, c désignant les nombres réels quelquonques, nous définissons
pour E deux opérations suivantes:
1) l’addition des éléments de E

X + Y ,X + Z , . . .
2) la multiplication des éléments de E par un nombre réel

a · X , b · Y , . . .
Admettons que les propriétés suivantes sont réalisées:



Stefan Banach’s Thesis (2)

I1 X + Y est un élément bien
déterminé de la classe E ,

I2 X + Y = Y + X ,
I3 X +(Y +Z ) = (X +Y )+Z ,
I4 X + Y = X + Z entraîne

Y = Z ,
I5 Il existe un élément de la

classe E déterminé θ et tel
qu’on ait toujours
X + θ = X ,

I6 a · X est un élément bien
déterminé de la classe E ,

I7 a · X = θ équivaut à X = θ
ou a = 0,

I8 a 6= 0 et a · X = a · Y
entraînent X = Y ,

I9 X 6= θ et a · X = b · X
entraînent a = b,

I10 a · (X + Y ) = a · X + a · Y ,

I11 (a + b) · X = a · X + b · X ,

I12 1 · X = X ,

I13 a · (b · X ) = (a · b) · X .



Stefan Banach’s Thesis (3)

Admettons ensuite qu’il existe une opération appelée norme (nous
la désignerons par le symbole ‖X‖), définie dans le champ E , ayant
pour contre-domaine l’ensemble de nombres réels et satisfaisant aux
conditions suivantes:
II1 ‖X‖ ≥ 0,
II2 ‖X‖ = 0 équivaut à X = θ,
II3 ‖a · X‖ = |a| · ‖X‖,
II4 ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖,
III Si

10 {Xn} est une suite d’éléments de E
20 lim r=∞

p=∞
‖Xr − Xp‖ = 0,

il existe un élément X tel que limn=∞ ‖X − Xn‖ = 0.



Norbert Wiener (1894-1964)

On the theory of sets of points in terms of continuous transforma-
tions, C. R. Congrès Int. Math., Strasbourg 1920, pp. 312-315



A vector system is defined as a system K of elements correlated
with a system σ of entities and the operations ⊕, �, and ‖ · ‖ in a
manner indicated by the following propositions:

(1) If ξ and η belong to σ,
ξ ⊕ η belongs to σ,

(2) If ξ belongs to σ, and n is a
real number ≥ 0, n � ξ be-
longs to σ,

(3) If ξ belongs to σ,
‖ξ‖ is a real number ≥ 0,

(4) n�(ξ⊕η) = (n�ξ)⊕(n�η),
(5) (m � ξ)⊕ (n � ξ) =

(m + n)� ξ,
(6) ‖n � ξ‖ = n‖ξ‖,
(7) ‖ξ ⊕ η‖ ≤ ‖ξ‖+ ‖η‖,
(8) m � (n � ξ) = mn � ξ,

(9) If A and B belong to K ,
there is associated with
them a single member AB
of σ,

(10) ‖AB‖ = ‖BA‖,
(11) Given an element A of K

and an element ξ of σ, there
is an element B of K such
that AB = ξ,

(12) AC = AB ⊕ BC ,

(13) ‖AB‖ = 0 when and only
when A = B ,

(14) If AB = CD, BA = DC .



Linear algebra and functional analysis (1)

I It is amazing to see that even around 1920 the concept of “vector
space” was not a well-established one, despite work by Cayley,
Hamilton, Graßmann, Bellavitis, Cauchy, Saint-Venant, Frobe-
nius, Jordan, Tait, Peirce, Maxwell, Clifford, Gibbs, Heaviside,
Peano, Pincherle, and others.

I Nowadays, we teach linear algebra in a first-semester course.
Therefore, we have the luxury to prepare functional analytic
ideas by incorporating examples in which infinite-dimensional
spaces occur.

I Historically, the need to put functional analytic ideas on a firm
basis in fact helped to formulate an abstract theory of vector
spaces and linear mappings.



Linear algebra and functional analysis (2)

“All this was to weigh heavily on the evolution of linear Functional
Analysis; in particular it followed (over a shorter span of years) the
same unfortunate succession of states through which Linear Algebra
had to go; and it was only after it was realized that the current
conception of vectors as “n-tuples” could not possible be extended to
infinite-dimensional function spaces, that this conception was finally
abandoned and that genuinely geometrical notions won the day.”
(Dieudonné, History of Functional Analysis)



Hamilton and Grassmann

Sir William Rowan Hamilton
(1805-1865)

Hermann Günter Grassmann
(1809-1877)



Title page of Grassmann’s “Ausdehnungslehre” (1844):
Hermann Grassmann,
Lehrer an der Friedrich-Wilhelms-Schule zu Stettin

Title page of Hamilton’s “Lectures on Quaternions” (1853):
Sir William Rowan Hamilton, LL. D., M.R.I.A., Fellow of the Ameri-
can Society of Arts and Sciences; of the Society of Arts for Scotland;
of the Royal Astronomical Society of London; and of the Royal North-
ern Society of Antiquaries at Copenhagen; Corresponding Member
of the Institute of France; Honorary or Corresponding Member of the
Imperial or Royal Academies of St. Petersburgh, Berlin, and Turin;
of the Royal Societies of Edinburgh and Dublin; of the Cambridge
Philosophical Society; the New York Historical Society; the Society
of Natural Sciences at Lausanne; and of Other Scientific Societies in
British and Foreign Countries; Andrews’ Professor of Astronomy in
the University of Dublin; and Royal Astronomer of Ireland.



D. Fearnley-Sander: Hermann Grassmann and the creation of linear alge-
bra, Amer. Math. Monthly 86 (10) (1979), 809-817:
Beginning with a collection of “units” e1, e2, e3, ... he effectively defines
the free linear space which they generate; that is to say, he considers formal
linear combinations a1e1 + a2e2 + a3e3 + ... where the aj are real numbers,
defines addition and multiplication by real numbers [in what is now the
usual way] and formally proves the linear space properties for these oper-
ations. ... He then develops the theory of linear independence in a way
which is astonishingly similar to the presentation one finds in modern lin-
ear algebra texts. He defines the notions of subspace, independence, span,
dimension, join and meet of subspaces, and projections of elements onto
subspaces. He is aware of the need to prove invariance of dimension under
change of basis, and does so. He proves the Steinitz Exchange Theorem,
named for the man who published it in 1913 ... Among other such results,
he shows that any finite set has an independent subset with the same span
and that any independent set extends to a basis, and he proves the impor-
tant identity dim(U +W ) = dim(U)+dim(W )−dim(U∩W ). He obtains
the formula for change of coordinates under change of basis, defines ele-
mentary transformations of bases, and shows that every change of basis
(equivalently, in modern terms, every invertible linear transformation) is a
product of elementaries.



Uniform Boundedness Principle (1)

Stefan Banach
(1892-1945)

Hugo Dyonizy
Steinhaus (1887-1972)



Uniform Boundedness Principle (2)

Theorem. Let M be a family of operators T : X → Y . Assume
that for each x ∈ X there is a constant c(x) such that ‖Tx‖ ≤ c(x)
for all T ∈M. Then there is a constant C > 0 such that ‖T‖op ≤ C
for all T ∈M.

Proof. Assume not. Then we can choose T1,T2,T3, . . . ∈ M and
x1, x2, x3, . . . ∈ X such that

‖Tn‖op ≥ 4 · 3n

[
n +

∑
k<n

c(xk)

]
, ‖xn‖ ≤

1
3n , ‖Tnxn‖ ≥

3‖Tn‖op

4 · 3n .

Namely, once Tn is chosen, pick ξn with ‖ξn‖ ≤ 1 and ‖Tnξn‖ ≥
(3/4)·‖Tn‖op and let xn := ξn/3n. As a consequence, x :=

∑∞
k=1 xk

exists, and Tnx =
∑

k Tnxk gets its main contribution from Tnxn
(“gliding hump”).



Uniform Boundedness Principle (3)

More precisely, ‖
∑

k<n Tnxk‖ ≤
∑

k<n ‖Tnxk‖ ≤
∑

k<n c(xk) and∥∥∥∥∥∑
k>n

Tnxk

∥∥∥∥∥ ≤∑
k>n

‖Tnxk‖ ≤
∑
k>n

‖Tn‖op‖xk‖ ≤
∑
k>n

‖T‖op

3k =
3‖Tn‖op

2 · 3n .

Since Tnx =
∑∞

k=1 Tnxk =
∑

k<n Tnxk + Tnxn +
∑

k>n Tnxk , we
have

‖Tnx‖ ≥ −
∑
k<n

c(xk) + ‖Tnxn‖ −
‖Tn‖op

2 · 3n

≥ −
∑
k<n

c(xk) +
3‖Tn‖op

4 · 3n − ‖Tn‖op

2 · 3n ≥ n.

Contradiction, because we should have ‖Tnx‖ ≤ c(x) for all n.


